Химическая эволюция. Химическая эволюция и возникновение жизни Химическая эволюция определение

Теория химической эволюции или как зарождалась жизнь

Теория химической эволюции - современная теория про-исхождения жизни - опирается на идею самозарожде-ния. В основе ее лежит не внезапное возникновение живых существ на Земле, а образование хи-мических соединений и систем, которые составляют живую материю. Она рассматривает химию древнейшей Земли, прежде всего химические реакции, протекавшие в прими-тивной атмосфере и в поверхностном слое воды, где, по всей вероятности, концентрировались легкие элементы, составля-ющие основу живой материи, и поглощалось огромное количество солнечной энергии. Эта теория пытается от-ветить на вопрос: каким образом в ту далекую эпоху могли самопроизвольно возникнуть и сформироваться в живую систему органические соединения?

Общий подход к химической эволюции первым сфор-мулировал советский биохимик А. И. Опарин (1894-1980). В 1924 г. в СССР была опубликована его небольшая книга, посвященная этому вопросу; в 1936 г. вышло в свет ее новое, дополненное издание (в 1938 г. она была переведена на английский язык). Опарин обратил внимание на то, что современные условия на поверхности Земли препятствуют синтезу большого количества органических соединений, по-скольку свободный кислород, имеющийся в избытке в ат-мосфере, окисляет углеродные соединения до диоксида угле-рода (углекислого газа, СО 2). Кроме того, он отмечал, что в наше время любое органическое вещество, “брошенное на произвол” на земле, используется живыми организмами (подобную мысль высказывал еще Чарлз Дарвин). Однако, утверждал Опарин, на первичной Земле господствовали иные условия. Можно полагать, что в земной атмосфере того времени отсутствовал кислород, но в изобилии имелись водород и газы, содержащие водород, такие, как метан (СН 4) и аммиак (NН 3). (Подобную атмосферу, богатую водородом и бедную кислородом, называют восстанови-тельной в отличие от современной, окислительной, атмос-феры, богатой кислородом и бедной водородом.) По мне-нию Опарина, такие условия создавали прекрасные воз-можности для самопроизвольного синтеза органических сое-динений.

Обосновывая свою идею о восстановительном характере примитивной атмосферы Земли, Опарин выдвигал следую-щие аргументы:

1. Водород в изобилии присутствует в звездах

2. Углерод обнаруживается в спектрах комет и холодных звезд в составе радикалов СН и CN, а окисленный углерод проявляется редко.

3. Углеводороды, т.е. соединения углерода и водорода, встречаются в метеоритах.

4. Атмосферы Юпитера и Сатурна чрезвычайно богаты метаном и аммиаком.

Как указывал Опарин, эти четыре пункта свидетельству-ют о том, что Вселенная в целом находится в восстано-вительном состоянии. Следовательно, на первобытной Земле углерод и азот должны были находиться в таком же со-стоянии.

5. В вулканических газах содержится аммиак. Это, считал Опарин, говорит о том, что азот присутствовал в первичной атмосфере в виде аммиака.

6. Кислород, содержащийся в современной атмосфере, вырабатывается зелеными растениями в процессе фотосин-теза, и, следовательно, по своему происхождению это био-логический продукт.

На основании этих рассуждений Опарин пришел к заклю-чению, что углерод на примитивной Земле впервые появился в виде углеводородов, а азот-в виде аммиака. Далее он высказал предположение, что в ходе известных ныне хи-мических реакций на поверхности безжизненной Земли воз-никали сложные органические соединения, которые по про-шествии довольно продолжительного периода времени, по-видимому, и дали начало первым живым существам. Первые организмы, вероятно, представляли собой очень простые системы, способные лишь к репликации (делению) за счет органической среды, из которой они образовались. Выражаясь современным языком, они были “гетеротрофами”, т. е. зависели от окружающей среды, которая снабжала их органическим питанием. На противоположном конце этой шкалы находятся “автотрофы”-например, такие орга-низмы, как зеленые растения, которые сами синтезируют все необходимые органические вещества из диоксида углерода, неорганического азота и воды. Согласно теории Опарина, автотрофы появились только после того, как гетеротрофы истощили запас органических соединений в примитивном океане.

Дж. Б. С. Холдейн (1892-1964) выдвинул идею, в неко-тором отношении сходную со взглядами Опарина, которая была изложена в популярном очерке, опубликованном в 1929 г. Он предположил, что органическое вещество, син-тезированное в ходе естественных химических процессов, протекавших на предбиологической Земле, накапливалось в океане, который в конце концов достиг консистенции “го-рячего разбавленного бульона”. По мнению Холдейна, при-митивная атмосфера Земли была анаэробной (свободной от кислорода), однако он не утверждал, что для осуществления синтеза органических соединений требовались восстанови-тельные условия. Таким образом, он допускал, что углерод мог присутствовать в атмосфере в полностью окисленной форме, т. е. в виде диоксида, а не в составе метана или других углеводородов. При этом Холдейн ссылался на результаты экспериментов (не собственных), в которых доказывалась возможность образования сложных органических соедине-ний из смеси диоксида углерода, аммиака и воды под действием ультрафиолетового излучения. Однако в даль-нейшем все попытки повторить эти эксперименты оказались безуспешными.

В 1952 г. Гарольд Юри (1893-1981), занимаясь не собст-венно проблемами происхождения жизни, а эволюцией Сол-нечной системы, самостоятельно пришел к выводу, что атмосфера молодой Земли имела восстановленный характер. Подход Опарина был качественным. Проблема, которую исследовал Юри, была по своему характеру физико-хими-ческой: используя в качестве отправной точки данные о составе первичного облака космической пыли и граничные условия, определяемые известными физическими и хими-ческими свойствами Луны и планет, он ставил целью раз-работать термодинамически приемлемую историю всей Солнечной системы в целом. Юри, в частности, показал, что к завершению процесса формирования Земля имела сильно восстановленную атмосферу, так как ее основными состав-ляющими были водород и полностью восстановленные фор-мы углерода, азота и кислорода: метан, аммиак и пары воды. Гравитационное поле Земли не могло удержать легкий водород-и он постепенно улетучился в космическое про-странство. Вторичным следствием потери свободного во-дорода было постепенное окисление метана до диоксида углерода, а аммиака-до газообразного азота, которые через определенное время превратили атмосферу из восстанови-тельной в окислительную. Юри предполагал, что именно в период улетучивания водорода, когда атмосфера находилась в промежуточном окислительно-восстановительном состоя-нии, на Земле могло образоваться в больших количествах сложное органическое вещество. По его оценкам, океан, по-видимому, представлял тогда собой однопроцентный раствор органических соединений. В результате возникла жизнь в ее самой примитивной форме.

Считается, что Солнечная система образовалась из про-тосолнечной туманности-огромного облака газа и пыли. Возраст Земли, как установлено на основе ряда независимых оценок, близок к 4,5 млрд. лет. Чтобы выяснить состав первичной туманности, разумнее всего исследовать относи-тельное содержание различных химических элементов в со-временной Солнечной системе. По данным исследований основные элементы-водород и гелий-вместе составляют свыше 98% массы Солнца (99,9% его атомного состава) и фактически Солнечной системы в целом. Поскольку Солнце-обычная звезда и к этому типу относится множество звезд в других галактиках, его состав в общем характеризует распростра-ненность элементов в космическом пространстве. Современ-ные представления об эволюции звезд позволяют предпо-ложить, что водород и гелий преобладали и в “молодом” Солнце, каковым оно было 4,5 млрд. лет назад.

Четыре основных элемента Земли относятся к числу девяти наиболее распространенных на Солнце, по своему составу наша планета существенно отличается от космического пространства в целом. (То же самое можно сказать о Меркурии, Венере и Марсе; однако Юпитер, Сатурн, Уран и Нептун в этот список не попадают.) Земля состоит главным образом из железа, кислорода, кремния и магния. Очевиден дефицит всех биологически важных легких элементов (за исключением кислорода) и поразительна согласно теории Опарина-Юри, необходимы для начала химической эволюции. Учитывая дефицит легких элементов и особенно благородных газов, разумно предположить, что изначально Земля сформировалась вообще без атмосферы. За исключением гелия, все благородные газы - неон, аргон, криптон и ксенон - обладают достаточной удельной массой, чтобы их могло удержать земное тяготение. Криптон и ксенон, например, тяжелее железа. Поскольку эти элементы образуют очень мало соединений, они, по всей видимости, существовали в примитивной атмосфере Земли в виде газов и не могли улетучиться, когда планета достигла наконец своих нынешних размеров. Но поскольку на Земле их со-держится в миллионы раз меньше, чем на Солнце, естест-венно допустить, что наша планета никогда не имела ат-мосферы, по составу близкой солнечной. Земля образовалась из твердых материалов, которые содержали лишь небольшое количество поглощенного или адсорбированного газа, так что никакой атмосферы сначала не было. Элементы, вхо-дящие в состав современной атмосферы, по-видимому, поя-вились на первобытной Земле в виде твердых химических соединений; впоследствии под действием тепла, возникаю-щего при радиоактивном распаде или выделении грави-тационной энергии, сопровождающем аккрецию Земли, эти соединения разлагались с образованием газов. В процессе вулканической деятельности эти газы вырывались из земных недр, образуя примитивную атмосферу.

Высокое содержание в современной атмосфере аргона (около 1%) не противоречит предположению, что благо-родные газы первоначально отсутствовали в атмосфере. Изотоп аргона, распространенный в космическом простран-стве, имеет атомную массу 36, тогда как атомная масса аргона, образовавшегося в земной коре при радиоактивном распаде калия, равна 40. Аномально высокое содержание на Земле кислорода (по сравнению с другими легкими эле-ментами) объясняется тем, что этот элемент способен сое-диняться с множеством других элементов, образуя такие очень стабильные твердые соединения, как силикаты и кар-бонаты, которые входят в состав горных пород.

Предположения Юри о восстановительном характере первобытной атмосферы основывались на высоком содер-жании на Земле железа (35% общей массы). Он считал, что железо, из которого ныне состоит ядро Земли, первона-чально было распределено более или менее равномерно по всему ее объему. При разогреве Земли железо расплавилось и собралось в ее центре. Однако, прежде чем это произошло, железо, содержащееся в том слое планеты, который сейчас называется верхней мантией Земли, взаимодействовало с водой (она присутствовала на примитивной Земле в виде гидратированных минералов, похожих на те, что обнару-жены в некоторых метеоритах); в результате в первобытную атмосферу выделились огромные количества водорода.

Исследования, осуществляемые с начала 1950-х годов, поставили под вопрос ряд положений описанного сценария. Некоторые планетологи высказывают сомнения насчет того, что железо, сосредоточенное сейчас в земной коре, могло когда-либо равномерно распределяться по всему объему планеты. Они склоняются к мнению, что аккреция проис-ходила неравномерно и железо конденсировалось из ту-манности раньше других элементов, образующих ныне ман-тию и кору Земли. При неравномерной аккреции содержание свободного водорода в примитивной атмосфере должно было оказаться ниже, чем в случае равномерного процесса. Другие ученые отдают предпочтение аккреции, но проте-кающей таким путем, который не должен приводить к образованию восстановительной атмосферы. Короче говоря, в последние годы были проанализированы различные мо-дели образования Земли, из которых одни в большей, другие в меньшей степени согласуются с представлениями о вос-становительном характере ранней атмосферы.

Попытки восстановить события, происходившие на заре формирования Солнечной системы, неизбежно связаны со множеством неопределенностей. Промежуток времени меж-ду возникновением Земли и образованием древнейших по-род, поддающихся геологической датировке, в течение ко-торого протекали химические реакции, приведшие к появ-лению жизни, составляет 700 млн. лет. Лабораторные опыты показали, что для синтеза компонентов генетической сис-темы необходима среда восстановительного характера; поэ-тому можно сказать, что раз жизнь на Земле возникла, то это может означать следующее: либо примитивная атмосфера имела восстановительный характер, либо органические сое-динения, необходимые для зарождения жизни, откуда-то принесены на Землю. Поскольку даже сегодня метеориты приносят на Землю разнообразные органические вещества, последняя возможность не выглядит абсолютно фантасти-ческой. Однако метеориты, по-видимому, содержат далеко не все вещества, необходимые для построения генетической системы. Хотя вещества метеоритного происхождения, вероятно, внесли существенный вклад в общий фонд органи-ческих соединений на примитивной Земле, в настоящее время кажется наиболее правдоподобным, что условия на самой Земле имели восстановительный характер в такой степени, что стало возможным образование органического вещества, приведшее к возникновению жизни.

Современные биологи показали, что жизнь-это хими-ческий феномен, отличающийся от прочих химических про-цессов проявлением генетических свойств. Во всех известных живых системах носителями этих свойств служат нуклеино-вые кислоты и белки. Сходство нуклеиновых кислот, белков и работающих на их основе генетических механизмов у организмов самых различных видов практически не оставля-ет сомнений в том, что все живые существа, ныне обитающие на Земле, связаны эволюционной цепью, которая соединяет их также с существовавшими в прошлом и вымершими видами. Подобная эволюция - естественный и неизбежный результат работы генетических систем. Таким образом, несмотря на бесконечное разнообразие, все живые существа на нашей планете принадлежат к одной семье. На Земле фактически существует лишь одна форма жизни, которая могла возникнуть только однократно.

Основным элементом земной биохимии является угле-род. Химические свойства этого элемента делают его особен-но подходящим для образования такого типа больших ин-формационно богатых молекул, которые необходимы для построения генетических систем с практически неограничен-ными эволюционными возможностями. Космос также очень богат углеродом, и целый ряд данных (результаты лабора-торных экспериментов, анализов метеоритов и спектроско-пии межзвездного пространства) свидетельствует, что обра-зование органических соединений, подобных тем, которые входят в состав живой материи, достаточно легко и в широких масштабах происходит во Вселенной. Поэтому вероятно, что если жизнь существует в каком-то ином уголке Вселенной, то она также основана на химии углерода.

Биохимические процессы, основанные на химии углерода, могут протекать лишь при сочетании на планете определен-ных условий температуры и давления, а также наличия подходящего источника энергии, атмосферы и растворителя. Хотя в земной биохимии роль растворителя играет вода, возможно, хотя и не обязательно, что в биохимических процессах, происходящих на иных планетах, участвуют дру-гие растворители.

Критерии возможности зарождения жизни

1.Температура и давление

Если предположение о том, что жизнь должна быть основана на химии углерода, правильно, то можно точно установить предельные условия для любой среды, способной поддерживать жизнь. Прежде всего температура не должна превышать предела стабильности органических молекул. Определить предельную температуру нелегко, но не требуется точных цифр. Поскольку температурные эффекты и величина давления взаимозависимы, их следует рассматривать в совокупности. Приняв давление равным примерно 1 атм (как на поверхности Земли), можно оценить верхний температурный предел жизни, учитывая, что многие небольшие молекулы, из которых построена генетическая система, например аминокислоты, быстро разрушаются при температуре 200-300°С. Исходя из этого, можно заключить, что области с температурой выше 250°С необитаемы. (Из этого, однако, не следует, что жизнь определяется только аминокислотами; мы выбрали их лишь в качестве типичных представителей малых органических молекул.) Реальный температурный предел жизни почти наверняка должен быть ниже указанного, поскольку большие молекулы со сложной трехмерной структурой, в частности белки, построенные из аминокислот, как правило, более чувствительны к нагрева-нию, чем небольшие молекулы. Для жизни на поверхности Земли верхний температурный предел близок к 100°С, и некоторые виды бактерий при этих условиях могут выживать в горячих источниках. Однако подавляющее большинство организмов при такой температуре гибнет.

Может показаться странным, что верхний температурный предел жизни близок к точке кипения воды. Не обусловлено ли это совпадение именно тем обстоятельством, что жидкая вода не может существовать при температуре выше точки своего кипения (100°С на земной поверхности), а не какими-то особыми свойствами самой живой материи?

Много лет назад Томас Д. Брок, специалист по термо-фильным бактериям, высказал предположение, что жизнь может быть обнаружена везде, где существует жидкая вода, независимо от ее температуры. Чтобы поднять точку кипе-ния воды, нужно увеличить давление, как это происходит, например, в герметической кастрюле-скороварке. Усиленный подогрев заставляет воду кипеть быстрее, не меняя ее темпе-ратуры. Естественные условия, в которых жидкая вода су-ществует при температуре выше ее обычной точки кипения, обнаружены в районах подводной геотермальной активнос-ти, где перегретая вода изливается из земных недр под совместным действием атмосферного давления и давления слоя океанской воды. В 1982 г. К. О. Стеттер обнаружил на глубине до 10 м в зоне геотермальной активности бактерии, для которых оптимальная температура развития составляла 105°С. Так как давление под водой на глубине 10 м равняется 1 атм, общее давление на этой глубине достигало 2 атм. Температура кипения воды при таком давлении равна 121°С.

Действительно, измерения показали, что температура воды в этом месте составляла 103°С. Следовательно, жизнь возмож-на и при температурах выше нормальной точки кипения воды.

Очевидно, бактерии, способные существовать при темпе-ратурах около 100°С, обладают “секретом”, которого лише-ны обычные организмы. Поскольку эти термофильные фор-мы при низких температурах растут плохо либо вообще не растут, справедливо считать, что и у обычных бактерий есть собственный “секрет”. Ключевым свойством, определяю-щим возможность выживания при высоких температурах, является способность производить термостабильные клеточ-ные компоненты, особенно белки, нуклеиновые кислоты и клеточные мембраны. У белков обычных организмов при температурах около 60°С происходят быстрые и необрати-мые изменения структуры, или денатурация. В качестве примера можно привести свертывание при варке альбумина куриного яйца (яичного “белка”). Белки бактерий, обита-ющих в горячих источниках, не испытывают таких измене-ний до температуры 90°С. Нуклеиновые кислоты также подвержены тепловой денатурации. Молекула ДНК при этом разделяется на две составляющие ее нити. Обычно это происходит в интервале температур 85-100°С в зависимости от соотношения нуклеотидов в молекуле ДНК.

При денатурации разрушается трехмерная структура бел-ков (уникальная для каждого белка), которая необходима для выполнения таких его функций, как катализ. Эта струк-тура поддерживается целым набором слабых химических связей, в результате действия которых линейная последова-тельность аминокислот, формирующая первичную структу-ру белковой молекулы, укладывается в особую, характерную для данного белка конформацию. Поддерживающие трех-мерную структуру связи образуются между аминокислота-ми, расположенными в различных частях белковой молеку-лы. Мутации гена, в котором заложена информация о последовательности аминокислот, характерной для опреде-ленного белка, могут привести к изменению в составе амино-кислот, что в свою очередь часто сказывается на его термо-стабильности. Это явление открывает возможности для эволюции термостабильных белков. Структура молекул, обеспе-чивающая термостабильность нуклеиновых кислот и клеточ-ных мембран бактерий, обитающих в горячих источниках, по-видимому, также генетически обусловлена.

Поскольку повышение давления препятствует кипению воды при нормальной точке кипения, оно может предотвра-тить и некоторые повреждения биологических молекул, свя-занные с воздействиями высокой температуры. Например, давление в несколько сотен атмосфер подавляет тепловую денатурацию белков. Это объясняется тем, что денатурация вызывает раскручивание спиральной структуры белковой молекулы, сопровождающееся увеличением объема. Препят-ствуя увеличению объема, давление предотвращает денату-рацию. При гораздо более высоких величинах давления, 5000 атм и более, оно само становится причиной денатурации. Механизм этого явления, которое предполагает компрес-сионное разрушение белковой молекулы, пока не ясен. Воз-действие очень высокого давления приводит также к повы-шению термостабильности малых молекул, поскольку высо-кое давление препятствует увеличению объема, обусловлен-ному в этом случае разрывами химических связей. Напри-мер, при атмосферном давлении мочевина быстро разруша-ется при температуре 130°С, но стабильна, по крайней мере в течение часа, при 200°С и давлении 29 тыс. атм.

Молекулы, находящиеся в растворе, ведут себя совершен-но иначе. Взаимодействуя с растворителем, они часто распа-даются при высокой температуре. Общее название таких реакций - сольватация; если растворителем служит вода, то реакция называется гидролизом.

Гидролиз-это основной процесс, вследствие которого в природе разрушаются белки, нуклеиновые кислоты и многие другие сложные биологические молекулы. Гидролиз проис-ходит, например, в процессе пищеварения у животных, но он осуществляется и вне живых систем, самопроизвольно, осо-бенно при высоких температурах. Электрические поля, воз-никающие при сольволитических реакциях, приводят к уменьшению объема раствора путем электрострикции, т.е. связывания соседних молекул растворителя. Поэтому сле-дует ожидать, что высокое давление должно ускорять про-цесс сольволиза, и опыты подтверждают это.

Поскольку мы полагаем, что жизненно важные процессы могут протекать только в растворах, отсюда следует, что высокое давление не может поднять верхний температурный предел жизни, по крайней мере в таких полярных раствори-телях, как вода и аммиак. Температура около 100°С-вероят-но, закономерный предел. Как мы увидим, это исключает из рассмотрения в качестве возможных мест обитания многие планеты Солнечной системы.

2. Атмосфера

Следующее условие, необходимое для обитаемости пла-неты, - наличие атмосферы. Достаточно простые соединения легких элементов, которые, по нашим предположениям, составляют основы живой материи, как правило, летучи, т. е. в широком интервале температур находятся в газообразном состоянии. По-видимому, такие соединения обязательно вы-рабатываются в процессах обмена веществ у живых организ-мов, а также при тепловых и фотохимических воздействиях на мертвые организмы, которые сопровождаются выделе-нием газов в атмосферу. Эти газы, наиболее простыми примерами которых на Земле являются диоксид углерода (углекислый газ), пары воды и кислород, в конце концов включаются в кругооборот веществ, который происходит в живой природе. Если бы земное тяготение не могло их удерживать, то они улетучились бы в космическое простран-ство, наша планета со временем исчерпала свои “запасы” легких элементов и жизнь на ней прекратилась бы. Таким образом, если бы на каком-то космическом теле, гравита-ционное поле которого недостаточно сильно, чтобы удержи-вать атмосферу, возникла жизнь, она не могла бы долго существовать.

Высказывалось предположение, что жизнь может сущест-вовать под поверхностью таких небесных тел, как Луна, которые имеют либо очень разреженную атмосферу, либо вообще лишены ее. Подобное предположение строится на том, что газы могут быть захвачены подповерхностным слоем, который и становится естественной средой обитания живых организмов. Но поскольку любая среда обитания, возникшая под поверхностью планеты, лишена основного биологически важного источника энергии-Солнца, такое предположение лишь подменяет одну проблему другой. Жизнь нуждается в постоянном притоке как вещества, так и энергии, но если вещество участвует в кругообороте (этим обусловлена необходимость атмосферы), то энергия, соглас-но фундаментальным законам термодинамики, ведет себя иначе. Биосфера способна функционировать, покуда снабжа-ется энергией, хотя различные ее источники не равноценны. Например, Солнечная система очень богата тепловой энер-гией - тепло вырабатывается в недрах многих планет, вклю-чая Землю. Однако мы не знаем организмов, которые были бы способны использовать его как источник энергии для своих жизненных процессов. Чтобы использовать теплоту в качестве источника энергии, организм, вероятно, должен функционировать подобно тепловой машине, т. е. переносить теплоту из области высокой температуры (например, от цилиндра бензинового двигателя) в область низкой темпера-туры (к радиатору). При таком процессе часть перенесенной теплоты переходит в работу. Но чтобы к. п. д. таких тепло-вых машин был достаточно высоким, требуется высокая температура “нагревателя”, а это немедленно создает огром-ные трудности для живых систем, так как порождает мно-жество дополнительных проблем.

Ни одной из этих проблем не создает солнечный свет. Солнце - постоянный, фактически неисчерпаемый источник энергии, которая легко используется в химических процессах при любой температуре. Жизнь на нашей планете целиком зависит от солнечной энергии, поэтому естественно предпо-ложить, что нигде в другом месте Солнечной системы жизнь не могла бы развиваться без прямого или косвенного потреб-ления энергии этого вида.

Не меняет существа дела и тот факт, что некоторые бактерии способны жить в темноте, используя для питания только неорганические вещества, а как единственный источ-ник углерода - его диоксид. Такие организмы, называемые хемолитоавтотрофами (что в буквальном переводе значит: питающие себя неорганическими химическими веществами), получают энергию, необходимую для превращения диоксида углерода в органические вещества за счет окисления водоро-да, серы или других неорганических веществ. Но эти источники энергии в отличие от Солнца истощаются и после использования не могут восстанавливаться без участия сол-нечной энергии. Так, водород, важный источник энергии для некоторых хемолитоавтотрофов, образуется в анаэробных условиях (например, в болотах, на дне озер или в желудочно-кишечном тракте животных) путем разложения под действием бактерий растительного материала, который сам, конечно, образуется в процессе фотосинтеза. Хемолитоавтотрофы используют этот водород для получения из диокси-да углерода метана и веществ, необходимых для жизне-деятельности клетки. Метан поступает в атмосферу, где разлагается под действием солнечного света с образованием водорода и других продуктов. В атмосфере Земли водород содержится в концентрации 0,5 на миллион частей; почти весь он образовался из метана, выделяемого бактериями. Водород и метан выбрасываются в атмосферу также при извержениях вулканов, но в несравненно меньшем количест-ве. Другой существенный источник атмосферного водоро-да-верхние слои атмосферы, где под действием солнечного УФ-излучения пары воды разлагаются с высвобождением атомов водорода, которые улетучиваются в космическое пространство.

Многочисленным популяцим различных животных-рыб, морских моллюсков, мидий, гигантских червей и т. д., кото-рые, как было установлено, и обитают вблизи горячих источников, обнаруженных на глубине 2500 м в Тихом океа-не, иногда приписывают способность существовать незави-симо от солнечной энергии. Известно несколько таких зон: одна рядом с Галапагосским архипелагом, другая - на рас-стоянии примерно 21° к северо-западу, у берегов Мекси-ки. В глубине океана запасы пищи заведомо скудны, и открытие в 1977 г. первой такой популяции немедленно поставило вопрос об источнике их питания. Одна возмож-ность, по-видимому, заключается в использовании органи-ческого вещества, скапливающегося на дне океана,-отбро-сов, образовавшихся в результате биологической активности в поверхностном слое; они переносятся в районы геотермальной активности горизонтальными течениями, возника-ющими вследствие вертикальных выбросов горячей воды. Движение вверх перегретой воды и вызывает образование придонных горизонтальных холодных течений, направлен-ных к месту выброса. Предполагается, что таким путем здесь и скапливаются органические останки.

Другой источник питательных веществ стал известен после того, как выяснилось, что в воде термальных источников содержится сероводород (H 2 S). He исключено, что хемолитоавтотрофные бактерии находятся у начала цепи пита-ния. Как показали дальнейшие исследования, хемолитоавтотрофы действительно являются главным источником орга-нического вещества в экосистеме термальных источников.

Поскольку “топливом” для этих глубоководных сооб-ществ служит образовавшийся в глубинах Земли сероводо-род, их обычно рассматривают как живые системы, способ-ные обходиться без солнечной энергии. Однако это не совсем верно, так как кислород, используемый ими для окисления “топлива”, является продуктом фотохимических превраще-ний. На Земле имеются только два значительных источника свободного кислорода, и оба они связаны с активностью Солнца.

Океан играет важную роль в жизни глубоководной экосистемы, поскольку он создает окружающую среду для организмов из термальных источ-ников, без которой они не могли бы существовать. Океан обеспечивает их не только кислородом, но и всеми нужными питательными веществами, за исключением сероводорода. Он удаляет отходы. И он же позволяет этим организмам переселяться в новые районы, что необходимо для их выжи-вания, поскольку источники недолговечны - согласно оцен-кам, время их жизни не превышает 10 лет. Расстояние между отдельными термальными источниками в одном районе океана составляет 5-10 км.

3. Растворитель

В настоящее время принято считать, что необходимым условием жизни является также наличие растворителя того или иного типа. Многие химические реакции, протекающие в живых системах, без растворителя были бы невозможны. На Земле таким биологическим растворителем служит вода. Она представляет собой главную составляющую живых клеток и одно из самых распространенных на земной поверх-ности соединений. Ввиду того что образующие воду хими-ческие элементы широко распространены в космическом пространстве, вода, несомненно,- одно из наиболее часто встречающихся соединений во Вселенной. Но, несмотря на такое изобилие воды повсюду. Земля - единственная планета в Солнечной системе, имеющая на своей поверхности океан; это важный факт, к которому мы вернемся позже.

Вода обладает рядом особых и неожиданных свойств, благодаря которым она может служить биологическим растворителем - естественной средой обитания живых орга-низмов. Этими свойствами определяется ее главная роль в стабилизации температуры Земли. К числу таких свойств относятся: высокие температуры плавления (таяния) и кипе-ния; высокая теплоемкость; широкий диапазон температур, в пределах которого вода остается в жидком состоянии; боль-шая диэлектрическая постоянная (что очень важно для раст-ворителя); способность расширяться вблизи точки замерза-ния. Всестороннее развитие эти вопросы получили, в част-ности, в трудах Л.Дж. Гендерсона (1878-1942), профессора химии Гарвардского университета.

Современные исследования показали, что столь необыч-ные свойства воды обусловлены способностью ее молекул образовывать водородные связи между собой и с другими молекулами, содержащими атомы кислорода или азота. В действительности жидкая вода состоит из агрегатов, в кото-рых отдельные молекулы соединены вместе водородными связями. По этой причине при обсуждении вопроса о том, какие неводные растворители могли бы использоваться жи-выми системами в других мирах, особое внимание уделяется аммиаку (NН 3), который также образует водородные связи и по многим свойствам сходен с водой. Называются и другие вещества, способные к образованию водородных связей, в частности фтористоводородная кислота (HF) и цианистый водород (HCN). Однако последние два соединения-малове-роятные кандидаты на эту роль. Фтор относится к редким элементам: на один атом фтора в наблюдаемой Вселенной приходится 10000 атомов кислорода, так что трудно пред-ставить на любой планете условия, которые благоприятство-вали бы образованию океана, состоящего из HF, а не из Н 2 О. Что касается цианистого водорода (HCN), составля-ющие его элементы в космическом пространстве встречают-ся в изобилии, но это соединение термодинамически недоста-точно устойчиво. Поэтому маловероятно, чтобы оно могло в больших количествах когда-либо накапливаться на какой-то планете, хотя, как мы говорили раньше, HCN представляет собой важное (хотя и временное) промежуточное звено в предбиологическом синтезе органических веществ.

Аммиак состоит из довольно распространенных элемен-тов и, хотя он менее стабилен, чем вода, все же достаточно устойчив, чтобы его можно было рассматривать как возмож-ный биологический растворитель. При давлении в 1 атм он находится в жидком состоянии в интервале температур 78 — 33°С. Этот интервал (45°) намного уже соответству-ющего интервала для воды (100°С), но он охватывает ту область температурной шкалы, где вода не может функцио-нировать как растворитель. Рассматривая аммиак, Гендер-сон указывал, что это единственное из известных соединений, которое как биологический растворитель приближается по своим свойствам к воде. Но в конце концов ученый отказался от своего утверждения по следующим причинам. Во-первых, аммиак не может накопиться в достаточном количестве на поверхности какой-либо планеты; во-вторых, в отличие от воды он не расширяется при температуре, близкой к точке замерзания (вследствие чего вся его масса может целиком остаться в твердом, замороженном состоянии), и наконец, выбор его как растворителя исключает выгоды от использо-вания кислорода в качестве биологического реагента. Ген-дерсон не высказал определенного мнения о причинах, кото-рые помешали бы аммиаку накапливаться на поверхности планет, но тем не менее он оказался прав. Аммиак разруша-ется УФ-излучением Солнца легче, чем вода, т. е. его молеку-лы расщепляются под воздействием излучения большей длины волны, несущего меньше энергии, которое широко представлено в солнечном спектре. Образующийся в этой реакции водород улетучивается с планет (за исключением самых больших) в космическое пространство, а азот остает-ся. Вода также разрушается в атмосфере под действием солнечного излучения, но только гораздо более коротковол-нового, чем то, которое разрушает аммиак, а выделяющиеся при этом кислород (О 2) и озон (О 3) образуют экран, очень эффективно защищающий Землю от убийственного УФ-из-лучения. Таким образом происходит самоограничение фото-деструкции атмосферных паров воды. В случае аммиака подобное явление не наблюдается.

Эти рассуждения неприменимы к планетам типа Юпите-ра. Поскольку водород в изобилии присутствует в атмосфере этой планеты, являясь ее постоянной составляющей, разумно предполагать наличие там аммиака. Эти предположения подтверждены спектроскопическими исследованиями Юпи-тера и Сатурна. Вряд ли на этих планетах имеется жидкий аммиак, но существование аммиачных облаков, состоящих из замерзших кристаллов, вполне возможно.

Рассматривая вопрос о воде в широком плане, мы не вправе априори утверждать или отрицать, что вода как биологический растворитель может быть заменена другими соединениями. При обсуждении этой проблемы нередко проявляется склонность к ее упрощению, поскольку, как правило, учитываются лишь физические свойства альтерна-тивных растворителей. При этом приуменьшается или сов-сем игнорируется то обстоятельство, которое отмечал еще Гендерсон, а именно: вода служит не только растворителем, но и активным участником биохимических реакций. Элемен-ты, из которых состоит вода, “встраиваются” в вещества живых организмов путем гидролиза или фотосинтеза у зеленых растений (см. реакцию 4). Химическая структура живого вещества, основанного на другом растворителе, как и вся биологическая среда, обязательно должны быть иными. Другими словами, замена растворителя неизбежно влечет за собой чрезвычайно глубокие последствия. Никто всерьез не пытался их себе представить. Подобная попытка вряд ли разумна, ибо она представляет собой ни больше ни меньше, как проект нового мира, а это занятие весьма сомнительное. Пока мы не в состоянии ответить даже на вопрос о возмож-ности жизни без воды, и едва ли что-нибудь узнаем об этом, пока не обнаружим пример безводной жизни.

Методология исследования химической эволюции (теория)

Исследование химической эволюции осложняется тем, что в настоящее время знания о геохимических условиях древней Земли не являются достаточно полными.

Поэтому, кроме геологических, привлекаются также астрономические данные. Так, условия на Венере и Марсе рассматривают как близкие к тем, что были на Земле на различных этапах её эволюции.

Основные данные о химической эволюции получены в результате модельных экспериментов, в ходе которых удалось получить сложные органические молекулы при имитации различных химических составов атмосферы , гидросферы и литосферы и климатических условий .

На основе имеющихся данных был выдвинут ряд гипотез о конкретных механизмах и непосредственных движущих силах химической эволюции.

Абиогенез

В широком смысле абиогенез - возникновение живого из неживого, то есть исходная гипотеза современной теории происхождения жизни . В 20-х годах XX века академик Опарин предположил, что в растворах высокомолекулярных соединений могут самопроизвольно образовываться зоны повышенной концентрации , которые относительно отделены от внешней среды и могут поддерживать обмен с ней. Он назвал их Коацерватные капли , или просто коацерваты .

Обзор темы

Гипотезы химической эволюции должны объяснять следующие аспекты:

  1. Появление в Космосе или на Земле условий для автокаталитического синтеза больших объёмов и значительного разнообразия углеродсодержащих молекул, то есть - возникновение в абиогенных процессах веществ, необходимых и достаточных для начала химической эволюции.
  2. Появление из таких молекул относительно устойчивых замкнутых агрегатов, позволяющих так изолировать себя от окружающей среды, что с ней становится возможным избирательный обмен веществом и энергией, то есть - возникновение неких протоклеточных структур.
  3. Появление в таких агрегатах способных к само-изменению и к само-репликации химических информационных систем, то есть - возникновение элементарных единиц наследственного кода.
  4. Появление взаимной зависимости между свойствами белков и функциями ферментов с носителями информации (РНК , ДНК), то есть - возникновение собственно кода наследственности, как необходимого условия уже для биологической эволюции.

Большой вклад в прояснение этих вопросов, среди прочих, сделали следующие учёные:

  • Гарольд Юри и Стэнли Миллер в 1953: Возникновение простых биомолекул в симулируемой древней атмосфере.
  • Сидней Фокс: Микросферы из протеноидов.
  • Томас Чек (университет Колорадо) и Сидней Алтман (университет Yale New Haven Connecticut) в 1981: Автокаталитическое РНК-деление: «Рибозимы» объединяют катализ и информацию в молекуле. Они в состоянии вырезать себя из более длинной цепи РНК и соединять остающиеся концы снова.
  • Уолтер Гилберт (Гарвард, университет Кембридж) разрабатывает в 1986 идею мира РНК .
  • Гюнтер фон Кидровски (Рур-университет Бохум) представляет в 1986 году первую само-реплицирующуюся систему на основе ДНК, важный вклад в понимание функций роста само-реплицирующихся систем
  • Манфред Эйген (институт Макса Планка факультет биофизической химии, Геттинген): Эволюция ансамблей молекул РНК. Гиперцикл.
  • Юлий Ребек (Кембридж) создаёт искусственную молекулу (Aminoadenosintriazidester), которая само-реплицируется в растворе хлороформа. Копии все же идентичны образцу, так что эволюция для этих молекул невозможна.
  • Джон Корлис (Goddard центр космических полётов - НАСА): Термальные источники морей поставляют энергию и химикалии, которые делают возможными независимую от космической среды химическую эволюцию. Ещё сегодня они являются средой жизни для первоначальных по многим признакам археобактерий (Archaea).
  • Гюнтер Вэхтерсхойзер (англ. Günter_Wächtershäuser ) (Мюнхен): Первые само-реплицирующиеся структуры с обменом веществ возникли на поверхности пирита. Пирит (сульфид железа) поставил для этого необходимую энергию. На растущих и снова распадающихся кристаллах пирита эти системы могли расти и размножаться, и различные популяции конфронтировали с разным условиям среды (условия отбора).
  • А. Г. Cairns-Smith (университет Глазго) и Дэвид К. Мауерцалл (Rockefeller-Universität New York, Нью-Йорк) видят в глиняных минералах систему, которая сначала сама подчинена химической эволюции, из-за чего возникает много различных, самореплицирующихся кристаллов. Эти кристаллы притягивают своим электрическим зарядом органические молекулы и катализируют синтез комплексных биомолекул, причём объём информации кристаллических структур служит сначала матрицей. Эти органические соединения становятся всё более сложными до тех пор, пока они не смогут размножаться без помощи глиняных минералов.
  • Вольфганг Вайганд, Марк Дерр и др. (Институт Макса Планка факультет биогеохимии, Йена) показали в 2003, что сульфид железа может катализировать синтез аммиака из молекулярного азота.

Унифицированная модель химической эволюции ещё не разработана, возможно потому, что основные принципы ещё не открыты.

Предварительные рассуждения

Биомолекулы

Пребиотический синтез сложных соединений молекул может делиться на три последовательных этапа:

  1. Возникновение простых органических соединений (спиртов , кислот , гетероциклических соединений : пуринов , пиримидинов и пирролов) из неорганических материалов.
  2. Синтез более сложных органических соединений - «биомолекул» - представителей наиболее распространённых классов метаболитов , в том числе и мономеров - структурных единиц биополимеров (моносахаридов , аминокислот , жирных кислот , нуклеотидов) из простых органических соединений.
  3. Возникновение сложных биополимеров (полисахариды , белки , нуклеиновые кислоты) из основных структурных единиц - мономеров.

Одним из вопросов является химический состав среды, в которой осуществлялся пребиологический синтез, в том числе то, какие неорганические компоненты являлись источниками различных элементов, входящих в состав различных органических соединений.

Возможные неорганические источники элементов:

Все гипотезы исходят из того, что помимо воды и фосфатов на начальных этапах истории Земли в атмосфере и гидросфере в достаточном количестве имелись только восстановленные формы, отличающиеся от обычных в современный период химических соединений, так как древняя атмосфера не содержала молекулярного кислорода.

В качестве источника энергии, инициирующей синтез, в это время могли выступать ультрафиолетовое излучение Солнца, тепло вулканических процессов , ионизирующие излучения радиоактивного распада и электрические разряды . Существуют также теории, в рамках которых источником необходимой для возникновения биомолекул энергии могут служить окислительно-восстановительные процессы между вулканическими газами (восстановитель) и частично окисляющими сульфидными минералами, например пиритом (FeS 2)

Развитие древней атмосферы

Развитие земной атмосферы является частью химической эволюции и к тому же важным элементом истории климата. Сегодня её разделяют на четыре важные ступени развития.

Вначале происходило образование химических элементов в космосе и появление из них земли - приблизительно 4,56 миллиардов лет назад. Предположительно наша планета уже довольно рано имела атмосферу из водорода (H 2) и гелия (He), которая, однако, была снова потеряна в космическое пространство. Астрономы исходят также из того, что из-за относительно высоких температур и эффектов солнечного ветра на земле и других близлежащих к солнцу планетах могло остаться только небольшое количество лёгких химических элементов (включая углерод , азот и кислород). Все эти элементы, составляющие сегодня основную часть биосферы, были занесены, по этой теории, ударами комет из более внешних участков солнечной системы лишь через большой промежуток времени, когда протопланеты немного остыли. В течение первых нескольких миллионов лет после возникновения солнечной системы постоянно повторялись столкновения с небесными телами, вызванные ими коллизии уничтожали глобальными стерилизациями образованные в это время живые системы. Поэтому появление жизни смогло начаться только после накопления воды за длительное время хотя бы в самых глубоких впадинах.

Следы вулканической активности: отложения серы на краях Halema’uma’u-кратера вулкана Мауна Лоа на Гаваях

Извержение вулкана - самая захватывающая форма вулканической деятельности

С медленным остыванием земли, вулканической деятельностью (выделение газов из недр земли) и глобальным распределением материалов упавших комет возникла вторая атмосфера земли. Скорее всего она состояла из водяного пара (H 2 O до 80 %), углекислого газа (CO 2 ; до 20 %), сероводорода (до 7 %), аммиака и метана. Высокий процент водяного пара объясняется тем, что поверхность земли была на тот момент ещё слишком горяча для образования морей. Прежде всего из воды, метана и аммиака в условиях молодой земли могли образоваться небольшие органические молекулы (кислоты, спирты, аминокислоты), позднее также органические полимеры (полисахариды, жиры, полипептиды), которые были нестабильны в кислотной атмосфере.

После охлаждения атмосферы ниже температуры кипения воды наступил очень длительный период выпадения дождей, которые и образовали океаны. Насыщенность других газов атмосферы относительно водяного пара повысилась. Интенсивное ультрафиолетовое облучение обусловило фотохимический распад воды, метана и аммиака, в результате чего накопились углекислый газ и азот. Лёгкие газы - водород и гелий - уносились в космос, углекислый газ растворялся в больших количествах в океане, увеличивая кислотность воды. Значение pH упало до 4. Инертный и малорастворимый азот N 2 накапливался со временем и образовывал около 3,4 миллиардов лет назад основную составляющую атмосферы.

Выпадение в осадок прореагировавшего с ионами металлов растворенного углекислого газа (карбонаты) и дальнейшее развитие живых существ, которые ассимилировали углекислый газ, привело к уменьшению CO 2 -концентрации и повышению значения pH в водоёмах.

Кислород O 2 играет важнейшую роль в дальнейшем развитии атмосферы. Он образовался с появлением способных к фотосинтезу живых существ, предположительно цианобактерий (сине-зелёных водорослей) или им подобных прокариотов . Ассимиляция ими углекислого газа привела к дальнейшему понижению кислотности, насыщенность атмосферы кислородом оставалась всё-таки довольно низкой. Причина этого - незамедлительное использование растворенного в океане кислорода для окисления двухвалентных ионов железа и других окисляемых соединений. Около двух миллиардов лет назад этот процесс завершился, и кислород стал постепенно накапливаться в атмосфере.

Очень реакционноспособный кислород легко окисляет восприимчивые органические биомолекулы и становится таким образом фактором отбора окружающей среды для ранних организмов. Только немногие анаэробные организмы смогли переместиться в свободные от кислорода экологические ниши, другая часть выработала ферменты (например, каталазы), которые делают кислород не опасным. В некоторых микроорганизмах из подобных энзимов развились комплексные мембранные энзимы - конечные оксидазы, которые метаболически использовали присутствующий кислород для накопления энергии необходимой для роста собственной клетки - конечная стадия окисления в аэробной цепи дыхания. В зависимости от организма имеются различные формы конечных оксидаз, например хинол-оксидаза или цитохром C - оксидаза, которые различаются активными центрами, содержащими ионы меди и гемы. Это даёт основание полагать, что они произошли различными параллельными путями развития. Во многих случаях в одном организме встречаются различные типы конечных оксидаз. Эти энзимы являются последними в цепи последовательно задействованных комплексов энзимов, которые энергию окислительно-восстановительных процессов сохраняют переносом протонов или ионов натрия в форме трансмембранного электрического потенциала. Последний другим комплексом энзимов преобразовывается снова в химическую энергию в форме АТФ . Синтез АТФ и прочих компонент цепи дыхания в эволюционном свете значительно старше конечных оксидаз, так как они играли важную роль уже во многих аэробных процессах обмена веществ (аэробное дыхание, многие процессы брожения, метаногенез), а также при аноксигенном и оксигенном фотосинтезе.

Миллиард лет назад содержание кислорода в атмосфере перешагнуло планку одного процента и спустя несколько миллионов лет был образован озоновый слой . Сегодняшнее содержание кислорода в 21 % было достигнуто лишь 350 миллионов лет назад и сохраняется с тех пор стабильным.

Значение воды для возникновения и сохранения жизни

H 2 O - химическое соединение, присутствующие при обычных условиях во всех трёх агрегатных состояниях.

Хотя этим была показана возможность естественного образования органических молекул, эти результаты сегодня иногда подвергаются критическим оценкам. В эксперименте с первичным бульоном исходили из того, что атмосфера на тот период времени имела щелочной характер, что соответствовало научным представлениям того времени. Сегодня же исходят из слабощелочного или даже нейтрального характера атмосферы, хотя вопрос ещё не окончательно решён и обсуждаются также локальные химические отклонения атмосферных условий, например в окрестностях вулканов. Позднейшими экспериментами была доказана возможность появления органических молекул и в этих условиях, даже таких, которые не получились при первых опытах, но в значительно меньших количествах. Этим часто аргументируется, что происхождение органических молекул другим путём, играло как минимум дополнительную роль. Приводятся также теории происхождения органики в окрестностях .

В качестве аргумента против происхождения органических молекул из первичного бульона иногда приводят тот факт, что во время опыта получается рацемат, то есть равная смесь из L и D-форм аминокислот. Соответственно, должен был существовать естественный процесс, в котором отдавалось предпочтение определённому варианту хиральных молекул. Некоторые космобиологи утверждают, что легче доказать происхождение органических соединений в космосе, так как, по их мнению, фотохимические процессы с циркулярно-поляризированным излучением, например от пульсаров, в состоянии уничтожить молекулы только определённого вращения. И действительно, у найденных в метеоритах хиральных органических молекул преобладали на 9 % левовращающие. Однако в 2001 году Alan Saghatelian показал, что самореплицирующиеся пептидные системы тоже в состоянии эффективно отбирать молекулы определённого вращения в рацематной смеси, что делает возможным и земное происхождение полимеров из определённых оптических изомеров.

Дальнейшие реакции

Из появляющихся при эксперименте Миллера-Юри промежуточных продуктов альдегидов и синильной кислоты HCN можно получить при симулируемых условиях земли 4,5 млрд лет назад дальнейшие биомолекулы. Таким образом Хуан Оро удалось в 1961 году осуществить синтез аденина :

Из рибозы, аденина и трифосфата возникает аденозинтрифосфат (АТФ), который используется в организмах в качестве универсального энергоносителя и строительного элемента (как монофосфат) рибонуклеиновых кислот (РНК).

Участие минералов и горных пород

  • Кристаллические поверхности могут служить матрицей для растущих макромолекул. При этом различные кристаллические поверхности могут связывать определённые энантиомеры молекул. L-и D аминокислоты присоединяются к разным местам кристалла кальцита.
  • Аарон Качальсский (Вайцманн-институт, Израиль) показал, что в водном растворе, содержащем монтмориллонит (один из минералов глин), возможен синтез белков с длиной цепи в больше чем 50 аминокислот с почти 100%-ным выходом.
  • Ионы металлов могут выступать в роли катализаторов, доноров электронов или же включаться в биомолекулы.
  • Минералы глин в водных растворах часто несут поверхностный электрический заряд и могут таким образом притягивать и удерживать противоположно заряженные органические молекулы.
  • В микрополостях горных пород молекулы органических соединений защищены от ультрафиолетового облучения.

Теория Вехтерхойзера

Особенно интенсивная форма содействия минералов и горных пород пребиотическому синтезу органических молекул должна протекать на поверхности минералов сульфида железа. Теория Миллера-Юри имеет существенные ограничения, особенно учитывая ошибочное объяснение полимеризации мономерных составляющих биомолекулы.

Анаэробные бактерии, обмен веществ которых происходит с участием железа и серы, существуют и сегодня.

Сросток кристаллов сульфида железа FeS 2

Альтернативный сценарий был с начала 1980-х годов разработан Гюнтером Вехтерхойзером. По этой теории жизнь на земле возникла на поверхности железно-серных минералов, то есть сульфидов, которые и сегодня образуются посредством геологических процессов, а на молодой земле должны были встречаться гораздо чаще. Эта теория в противовес гипотезе мира РНК , предполагает, что обмен веществ предшествовал появлению энзимов и генов . В качестве подходящего места предлагаются черные курильщики на дне океанов где высокое давление, высокая температура, нет кислорода и обильно представлены различные соединения, которые могли послужить строительным материалом "кирпичиков жизни" или катализатором в цепочке химических реакциях. Большое преимущество этого концепта перед предшественниками в том, что впервые образование комплексных биомолекул связано с постоянным надёжным источником энергии. Энергия выделяется при восстановлении частично окисленных железно-серных минералов, например пирита (FeS 2), водородом (уравнение реакции: FeS 2 + H 2 FeS + H 2 S), и этой энергии достаточно для эндотермического синтеза мономерных структурных элементов биомолекул и их полимеризации:

Fe 2+ + FeS 2 + H 2 2 FeS + 2 H + ΔG°" = −44.2 кДж/моль

Другие металлы, так же как и железо, тоже образуют нерастворимые сульфиды. В дополнение к этому пирит и другие железно-серные минералы имеют положительно заряженную поверхность, на которой могут располагаться, концентрироваться и реагировать между собой преимущественно отрицательно заряженные биомолекулы (органические кислоты, фосфорные эфиры, тиолы). Необходимые для этого вещества (сероводород, моноксид углерода и соли двухвалентного железа) попадают из раствора на поверхность этого «железо-серного мира ». Вехтерхойзер привлекает для своей теории и сегодня существующие основополагающие механизмы обмена веществ и выводит из них замкнутый в себе сценарий синтеза комплексных органических молекул (органические кислоты, аминокислоты, сахар, азотистые основания, жиры) из простых неорганических соединений, находящихся в вулканических газах (NH 3 , H 2 , CO, CO 2 , CH 4 , H 2 S).

В противоположность эксперименту Миллер-Юри не привлекаются источники энергии извне, в форме молнии или ультрафиолетового излучения; кроме того, первые ступени синтеза при высоких температурах и давлениях протекают гораздо быстрее (например, катализируемые энзимами химические реакции). При температуре подводных вулканов до 350 °C возникновение жизни является вполне представимым. Только позднее при возникновении чувствительных к высоким температурам катализаторам (витамины, белки) эволюция должна была происходить при более низкой температуре.

Сценарий Вехтерхойзера хорошо подходит к условиям глубоководных гидротермальных источников, так как имеющийся там перепад температуры позволяет подобное распределение реакций. Древнейшие из сегодня живущих микроорганизмов - самые жароустойчивые, предельный известный температурный максимум для их роста составляет +122 °C. Кроме того железо-серные активные центры и сегодня задействованы в биохимических процессах, что может указывать на первичное участие Fe-S-минералов в развитии жизни.

Образование макромолекул

Биомакромолекулы - это белки и нуклеиновые кислоты. Увеличение молекулярных цепей (полимеризация) нуждается в энергии и происходит с выделением воды (конденсация). При расщеплении макромолекул (гидролиз) энергия выделяется. Так как химическое равновесие настолько сильно смещено в сторону мономеров, что реакция протекает термодинамически необратимо в сторону гидролиза полимеров, синтез полимеров невозможен без постоянного поступления энергии. Даже с помощью теоретической поддержки испарением воды, добавлением солей (связывают воду) или распадом продуктов, равновесие смещается лишь незначительно. В итоге возникновение жизни очень вероятно связано с надёжным источником энергии, который использовался бы для полимеризации.

[Мономеры] n + H 2 O n Мономеры + Тепло,

Энергия + Мономеры [Мономеры] n + H 2 O.

В качестве источника энергии в биохимии используется чаще всего АТФ, для образования которого необходимы уже существующие энзимы. В условиях молодой земли возможно снабжение энергией синтеза полимеров гидролитическим расщеплением полифосфатов, что используется некоторыми энзимами вместо ращепления АТФ и сегодня. Но маловероятно, что полифосфаты были в необходимом количестве, так как они могли спонтанно образовываться, при испарении фосфатосодержащих растворах, но также относительно быстро гидролизироваться, растворяясь в воде. Подобные процессы могли происходить на побережье при регулярном приливе и отливе. Но в этом случае все зависимые от воды процессы постоянно прерывались бы, что слишком замедлило бы синтез комплексных соединений. Поэтому обратимся к совсем другой системе, в которой происходит как синтез мономерных составляющих так и зависимое от постоянного источника энергии образование полимеров, - к анаэробным окислительно-восстановительным реакциям с сульфидами металлов.

Равновесие синтеза полимеров смещается в сторону образования полимеров повышением концентрации мономеров и обезвоживанием продуктов реакции. Условием для этого является ограничение среды реакции, которая имеет лишь ограниченный обмен веществ с внешней средой. Традиционно считалось, что подобные процессы протекают в маленьких прудах с высоким испарением, что основной идеей опирается ещё на труды Ч. Дарвина. Сегодня рассматриваются вулканические регионы океанов с осевшими от гидротермальных источников сульфидами металлов как вполне подходящее место для развития подобного сценария.

Другие варианты решения проблемы имеют сильные ограничения и сложносопоставимы с условиями ранней земли. Преимущественно требуется для одного или нескольких этапов исключение воды, что очень легко осуществить в лаборатории, но не в рассматриваемое время на земле. Одна из подобных систем - это полимеризация карбамидов (R-N=C=N-R) или дициана (N≡C-C≡N) в безводной среде. При этом конденсация исходных составляющих протекает параллельно реакции карбамида, при которой выделяется необходимая энергия:

Энергия + + + H 2 O (H-X-OH = мономер, например аминокислота или рибоза)

H 2 O + Энергия (если R = H возникает мочевина)

При ультрафиолетовом излучении из синильной кислоты и образуется дициан, однако, в высыхающей трясине летучая молекула быстро испарилась бы. Если сухая смесь аминокислот нагревается до 130 °C несколько часов, то образуются похожие на белок макромолекулы. При наличии полифосфатов достаточно 60 °C. Эти условия могут образоваться, если вода с растворенными аминокислотами вступает в контакт с горячим вулканическим пеплом.

Если нагреть смесь нуклеотида в присутствии полифосфатов до 55 °C, то, хотя и возникают полинуклеотиды, но всё же соединение происходит вероятнее за счёт 5’- и 2’-C-атомов рибозы, так как оно протекает легче, чем во всех организмах имеющиеся 5’-3’-связи. Из обоих типов полинуклеотидов образуются двойные цепи (сравни со строением ДНК). Разумеется 5’-3’-двойные цепи стабильнее, чем 5’-2’.

Если на 2’ атоме углерода рибозы отсутствует гидроксильная группа, получается дезоксорибоза. Теперь могут образовываться типичные для ДНК 5’-3’ связи.

Образование пребиотических структур (предшественников клеток)

Клетки поддерживают свои функции тем, что они образуют ограниченные среды для реакций, чтобы разделять друг от друга процессы обмена веществ и исключать нежелательные реакции. Одновременно могут создаваться различия концентраций.

Коацерваты

Известно, что с повышением концентрации многие органические соединения, молекулы которых содержат как гидрофильные, так и гидрофобные участки , способны в водных растворах к мицеллообразованию , то есть выделению микрокапелек органической фазы. Мицеллообразование наблюдается также при высаливании, то есть при увеличении концентрации солей в коллоидных растворах биополимеров-полиэлектролитов, при этом выделяются микрокапли диаметром 1-500 мкм, содержащие биополимеры в высокой концентрации.

Химическая эволюция - процесс необратимых изменений, приводящий к появлению новых химических соединений - продуктов, более сложных и высокоорганизованных по сравнению с исходными веществами. Эти процессы стали активно и целенаправленно исследовать в 1970-е гг. в связи с изучением проблемы постоянно усложняющихся химических процессов до уровня, способствовавшего возникновению живого вещества на Земле. Интерес к этим процессам восходит к давним попыткам понять, как из неорганической материи возникает органическая, а далее и жизнь. Первым осознал высокую упорядоченность и эффективность химических процессов в живых организмах основатель органической химии Й.Я. Берцелиус (конец XVIII - начало XIX в.). Он установил, что основой лабораторий живого организма является биокатализ. Большое значение каталитическому опыту живой природы придавалось и в XX в. Так, академик Н.Н. Семенов рассматривал химические процессы, протекающие в тканях растений и животных, как своеобразное «химическое производство» живой природы.

Кратко рассмотрим этапы химической эволюции. Вероятно, следует признать, что она началась с появлением простейшего носителя - атома. Согласно концепции Большого взрыва, существующие сейчас, химические элементы возникли в процессе эволюции Вселенной от сверхплотного и сверхгорячего состояния до современного мира звезд и галактик. Предполагается, что первыми образовались простейшие атомы (вернее, их ядра) водорода. Приблизительно через 1 с после Большого взрыва плотность материи уменьшилась до 1 т/см 3 , температура - до 100 млрд К, а диаметр вырос до 1500 млрд км. Вещество находилось в состоянии полностью ионизированной плазмы, состоящей из нуклонов (протонов и нейтронов) и электронов. Еще через 10 с, когда температура понизилась до 10 млрд К, появились условия для протекания ядерной реакции образования дейтронов - ядер дейтерия (тяжелого водорода).

Однако при этой температуре равновесие данной реакции сильно сдвинуто влево (оно сдвигается вправо только при температуре 1млрд К - примерно через 100 с после Большого взрыва), и дейтроны не могли накапливаться, так как они при этих условиях превращаются в ядра гелия (эта схема вполне удовлетворительно объясняет количество гелия в нашей Вселенной). На дозвездной стадии развития материи ядра других химических элементов не образуются, поскольку плотность и температура расширяющейся Вселенной быстро падают. При этом процесс образования 4 Не (цифра слева вверху - относительная атомная масса, т.е. масса атома, выраженная в атомных единицах массы, которая составляет 1/12 массы изотопа углерода с массовым числом 12- 1,6605655(86)10"27 кг), начавшись приблизительно через 2 мин. после Большого взрыва, прекращается уже к концу 4-й минуты. При остывании Вселенной до температуры 3500 К (приблизительно через 1 млн. лет) происходит рекомбинация ядер гелия и оставшихся ядер водорода с электронами: образуются атомы гелия и водорода - исходный материал для межзвездного газа и звездных систем.

Дальнейший синтез химических элементов продолжается в недрах звезд при повышении температуры. В процессе конденсации в протозвезду межзвездного газа, состоящего из водорода и гелия, в результате гравитационного сжатия температура повышается и снова становится возможной реакция образования гелия из водорода. Этот этап характеризуется температурами, не превышающими 20 106 К.

После ядер гелия Не наиболее устойчивыми являются ядра 12 С и 16 О. Термоядерная эпоха образования таких ядер (Т < 100 млн К) наступает после того, как на первом этапе истощается, «выгорает» водород. В эту эпоху в плотных выгоревших ядрах звезд-гигантов возможно непосредственное образование углерода и кислорода (не атомов, а ядер). Дальнейшее слияние ядер гелия приводит к образованию 20 Ne, 24 Mg и т.п. Более поздняя ядерная эпоха, когда обеспечивается температура до 1 млрд. К, характеризуется «горением» углерода. При этом образуются ядра вплоть до 27 А1 и 28 Si. Выше 30 млрд. К в реакцию вступают более тяжелые ядра, начиная с кремния 32 Si. В условиях складывающегося при этом термодинамического равновесия синтезируются элементы вплоть до железа и атомы близких ему элементов, ядра которых являются самыми стабильными ядрами. При этом достигается минимум энергии всей системы, и более тяжелые ядра не синтезируются. Получение элементов с большими атомными номерами осуществляется по другому механизму - последовательный захват ядрами нейтронов и последующий 3-распад. В подобных процессах в качестве самого тяжелого может получиться нуклид l81 Bi. Ядра, более тяжелые, чем 181 Bi, синтезируются во время взрывов новых и сверхновых звезд в условиях огромной плотности нейтронных потоков, когда возможен захват ядрами нейтронов не по одному, а группами.

Можно с большой долей вероятности предположить, что в Солнечной системе сменилось несколько этапов ядерного синтеза. Сравнение химического состава Солнца и химического состава звездного вещества позволяет заключить, что все описанные выше процессы синтеза ядер имели место в Солнечной системе, причем первоначальная масса образовавшейся в нашем участке Галактики звезды превышала критическую (равную 1,44 массы Солнца), и она оказалась неустойчивой. Под действием гравитационного притяжения протозвезда сжималась, ее температура повышалась, обеспечивая первые этапы ядерного синтеза. Выделяющаяся при этом энергия оказалась слишком велика, вследствие чего через некоторое время происходил взрыв и образовывались ядра самых тяжелых элементов. Масса звезды уменьшалась за счет выброса вещества. Этот процесс повторялся неоднократно до тех пор, пока масса центральной массивной звезды не стала ниже критического предела. Такой механизм обеспечивает интервал времени, достаточный для химической, геолого-географической и биологической эволюции.

В настоящее время многие исследователи полагают, что планеты Солнечной системы образовались из солнечной материи, выброшенной из Солнца, когда оно становилось сверхновой звездой. Охлаждение образовавшейся вокруг Солнца дискообразной газовой туманности дало возможность для соединения атомов в молекулы, т.е. началась собственно химическая эволюция.

Молекулы не могли образоваться при звездных температурах, когда большинство атомов существует в виде многозарядных ионов (например, в солнечной короне при 1 млн. К атомы железа являются ионами Fe 13+). Двухатомные молекулы обнаружены в спектрах лишь наиболее холодных звезд с температурой поверхности 2000-3000 К (оксиды Al, Mg, Ti, Zr, С, Si и некоторые другие двухатомные молекулы с наиболее прочной химической связью). При этом в межзвездном пространстве присутствует большое количество молекул, в том числе достаточно сложных. Предполагается, что состав указанных молекул соответствует составу первых молекул, образовавшихся в результате охлаждения звездного вещества. Найдены и другие молекулы, но в значительно меньших количествах.

Когда температура протопланетной туманности понизилась до 1000-1800 К, начали конденсироваться, т.е. становиться жидкими и твердыми, самые тугоплавкие вещества, в частности образовались капельки железа, а впоследствии и силикатов (солей кремниевых кислот).

При температурах 400-1000 К конденсировались другие металлы и их соединения с серой и кислородом. Застывшие капли силикатного материала в виде хондр (маленьких сферических тел) образовали, по-видимому, при последующем сгущении множество астероидов - первичных тел хондритовых метеоритов. Можно предположить, что в результате дифференциации первичного газа под действием солнечного ветра (истечения плазмы солнечной короны в межпланетное пространство) и градиента температур атомы наиболее легких элементов были отброшены на периферию Солнечной системы и расположенные ближе к Солнцу планеты земного типа возникли путем сгущения наиболее высокотемпературной фракции с повышенным содержанием железа.

С формированием Земли как планеты на химическую эволюцию стала оказывать действие эволюция Земли. Это влияние выражалось (и выражается в настоящее время) в изменении концентрационного распределения химических элементов в теле Земли и по ее оболочкам (в атмосфере, гидросфере, коре, мантии, ядре), а также в создании условий (температура, давление) для образования новых веществ.

Конечно, при этом имело место и обратное воздействие. Образование новых веществ и появление возможностей для новых химических процессов вызывали формирование новых геологических образований, например осадочных пород. Таким образом, геологическая и химическая эволюции протекают в значительной степени совместно, взаимно влияя друг на друга. Химическая эволюция привела к появлению жизни. Это произошло благодаря развитию не веществ, а химических систем и процессов, в них происходящих.

Этапы химической эволюции

Химическая эволюция - процесс необратимых изменений, приводящий к появлению новых химических соединений - продуктов, более сложных и высокоорганизованных по сравнению с исходными веществами. Эти процессы стали активно и целенаправленно исследовать в 1970-е гг. в связи с изучением проблемы постоянно усложняющихся химических процессов до уровня, способствовавшего возникновению живого вещества на Земле. Интерес к этим процессам восходит к давним попыткам понять, как из неорганической материи возникает органическая, а далее и жизнь. Первым осознал высокую упорядоченность и эффективность химических процессов в живых организмах основатель органической химии Й.Я. Берцелиус (конец XVIII - начало XIX в.). Он установил, что основой лабораторий живого организма является биокатализ. Большое значение каталитическому опыту живой природы придавалось и в XX в. Так, академик Н.Н. Семенов рассматривал химические процессы, протекающие в тканях растений и животных, как своеобразное <химическое производство> живой природы.

Кратко рассмотрим этапы химической эволюции. Вероятно, следует признать, что она началась с появлением простейшего носителя - атома. Согласно концепции Большого взрыва, существующие сейчас химические элементы возникли в процессе эволюции Вселенной от сверхплотного и сверхгорячего состояния до современного мира звезд и галактик. Предполагается, что первыми образовались простейшие атомы (вернее, их ядра) водорода. Приблизительно через 1 с после Большого взрыва плотность материи уменьшилась до 1 т/см 3 , температура - до 100 млрд К, а диаметр вырос до 1500 млрд км. Вещество находилось в состоянии полностью ионизированной

плазмы, состоящей из нуклонов (протонов и нейтронов) и электронов. Еще через 10 с, когда температура понизилась до 10 млрд К, появились условия для протекания ядерной реакции образования дейтронов - ядер дейтерия (тяжелого водорода).

Однако при этой температуре равновесие данной реакции сильно сдвинуто влево (оно сдвигается вправо только при температуре 1млрд К - примерно через 100 с после Большого взрыва), и дейтроны не могли накапливаться, так как они при этих условиях превращаются в ядра гелия (эта схема вполне удовлетворительно объясняет количество гелия в нашей Вселенной). На дозвездной стадии развития материи ядра других химических элементов не образуются, поскольку плотность и температура расширяющейся Вселенной быстро падают. При этом процесс образования 4 Не (цифра слева вверху - относительная атомная масса, т.е. масса атома, выраженная в атомных единицах массы, которая составляет 1/12 массы изотопа углерода с массовым числом 12- 1,6605655(86)10" 27 кг), начавшись приблизительно через 2 мин после Большого взрыва, прекращается уже к концу 4-й минуты. При остывании Вселенной до температуры 3500 К (приблизительно через 1 млн лет) происходит рекомбинация ядер гелия и оставшихся ядер водорода с электронами: образуются атомы гелия и водорода - исходный материал для межзвездного газа и звездных систем.

Дальнейший синтез химических элементов продолжается в недрах звезд при повышении температуры. В процессе конденсации в протозвезду межзвездного газа, состоящего из водорода и гелия, в результате гравитационного сжатия температура повышается и снова становится возможной реакция образования гелия из водорода. Этот этап характеризуется температурами, не превышающими 20 10 6 К.

После ядер гелия Не наиболее устойчивыми являются ядра 12 С и 1б О. Термоядерная эпоха образования таких ядер (Т < 100 млн К) наступает после того, как на первом этапе истощается, <выгорает> водород. В эту эпоху в плотных выгоревших ядрах звезд-гигантов возможно непосредственное образование углерода и кислорода (не атомов, а ядер). Дальнейшее слияние ядер гелия приводит к образованию 20 Ne, 24 Mg и т.п. Более поздняя ядерная эпоха, когда обеспечивается температура до 1 млрд К, характеризуется <горением> углерода. При этом образуются ядра

вплоть до 27 А1 и 28 Si. Выше 30 млрд К в реакцию вступают более тяжелые ядра, начиная с кремния 32 Si В условиях складывающегося при этом термодинамического равновесия синтезируются элементы вплоть до железа и атомы близких ему элементов, ядра которых являются самыми стабильными ядрами. При этом достигается минимум энергии всей системы, и более тяжелые ядра не синтезируются. Получение элементов с большими атомными номерами осуществляется по другому механизму - последовательный захват ядрами нейтронов и последующий (3-распад. В подобных процессах в качестве самого тяжелого может получиться нуклид l81 Bi. Ядра, более тяжелые, чем 18l Bi, синтезируются во время взрывов новых и сверхновых звезд в условиях огромной плотности нейтронных потоков, когда возможен захват ядрами нейтронов не по одному, а группами.

Можно с большой долей вероятности предположить, что в Солнечной системе сменилось несколько этапов ядерного синтеза. Сравнение химического состава Солнца и химического состава звездного вещества позволяет заключить, что все описанные выше процессы синтеза ядер имели место в Солнечной системе, причем первоначальная масса образовавшейся в нашем участке Галактики звезды превышала критическую (равную 1,44 массы Солнца), и она оказалась неустойчивой. Под действием гравитационного притяжения протозвезда сжималась, ее температура повышалась, обеспечивая первые этапы ядерного синтеза. Выделяющаяся при этом энергия оказалась слишком велика, вследствие чего через некоторое время происходил взрыв и образовывались ядра самых тяжелых элементов. Масса звезды уменьшалась за счет выброса вещества. Этот процесс повторялся неоднократно до тех пор, пока масса центральной массивной звезды не стала ниже критического предела. Такой механизм обеспечивает интервал времени, достаточный для химической, геолого-географической и биологической эволюции.

В настоящее время многие исследователи полагают, что планеты Солнечной системы образовались из солнечной материи, выброшенной из Солнца, когда оно становилось сверхновой звездой. Охлаждение образовавшейся вокруг Солнца дискообразной газовой туманности дало возможность для соединения атомов в молекулы, т.е. началась собственно химическая эволюция.

Молекулы не могли образоваться при звездных температурах, когда большинство атомов существует в виде многозарядных ионов (например, в солнечной короне при 1 млн К атомы железа являются ионами Fe 13+). Двухатомные молекулы обнаружены в спектрах лишь наиболее холодных звезд с температурой поверхности 2000-3000 К (оксиды Al, Mg, Ti, Zr, С, Si и некоторые другие двухатомные молекулы с наиболее прочной химической связью). При этом в межзвездном пространстве присутствует большое количество молекул, в том числе достаточно сложных (табл. 7.1). Предполагается, что состав указанных молекул соответствует составу первых молекул, образовавшихся в результате охлаждения звездного вещества. Найдены и другие молекулы, но в значительно меньших количествах.

Когда температура протопланетной туманности понизилась до 1000-1800 К, начали конденсироваться, т.е. становиться жидкими и твердыми, самые тугоплавкие вещества, в частности образовались капельки железа, а впоследствии и силикатов (солей кремниевых кислот).

При температурах 400-1000 К конденсировались другие металлы и их соединения с серой и кислородом. Застывшие капли силикатного материала в виде хондр (маленьких сферических тел) образовали, по-видимому, при последующем сгущении множество астероидов - первичных тел хондритовых метеоритов. Можно предположить, что в результате дифференциации первичного газа под действием солнечного ветра (истечения плазмы солнечной короны в межпланетное пространство) и градиента температур атомы наиболее легких элементов были отброшены на периферию Солнечной системы и расположенные ближе к Солнцу планеты земного типа возникли путем сгущения наиболее высокотемпературной фракции с повышенным содержанием железа.

С формированием Земли как планеты на химическую эволюцию стала оказывать действие эволюция Земли. Это влияние выражалось (и выражается в настоящее время) в изменении концентрационного распределения химических элементов в теле Земли и по ее оболочкам (в атмосфере, гидросфере, коре, мантии, ядре), а также в создании условий (температура, давление) для образования новых веществ.

Конечно, при этом имело место и обратное воздействие. Образование новых веществ и появление возможностей для новых химических процессов вызывали формирование новых геологических образований, например осадочных пород. Таким образом, геологическая и химическая эволюции протекают в значительной степени совместно, взаимно влияя друг на друга. Химическая эволюция привела к появлению жизни. Это произошло благодаря развитию не веществ, а химических систем и процессов, в них происходящих.

Проблема самоорганизации химических систем

Выделяют субстратный и функциональный подходы к решению проблем самоорганизации предбиологических химических систем в биологические . Результатом субстратного подхода к проблеме биогенеза является накопленная информация об отборе химических элементов и структур.

Считается, что многие из 109 открытых на сегодня химических элементов, попадая в живые организмы, участвуют в их* жизнедеятельности. Основу живых систем составляют шесть элементов - органогенов: углерод, водород, кислород, азот, фосфор и сера. Общая весовая доля этих элементов в организмах составляет около 97,4%. За ними следуют еще 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем: натрий, калий, кальций, магний, алюминий, железо, кремний, хлор, медь, цинк, кобальт, никель. Их весовая доля в организмах примерно 1,6%. Еще около 20 элементов участвуют в построении и функционировании узкоспецифических биосистем, например водорослей, состав которых определяется в известной мере питательной средой. Участие всех остальных элементов в построении биосистем практически не зафиксировано. При этом в настоящее время насчитывается более 5 млн химических соединений, из которых 96% - органические, состоящие из перечисленных 6-18 элементов. Остальные 90 химических элементов в условиях Земли входят всего в 300 тыс. неорганических соединений.

Наиболее распространенные на Земле органогены - кислород и водород. Распространенность углерода, азота, фосфора и серы в поверхностных слоях Земли примерно одинакова и в общем невелика - около 0,24% по весу. В то же время можно говорить о господстве во Вселенной двух элементов - водорода и гелия, а все остальные элементы следует рассматривать как примесь к ним. Таким образом, геохимические условия не играют существенной роли в отборе химических элементов при формировании органических и биологических систем. Определяющими факторами выступают требования соответствия между строительным материалом и высокоорганизованными структурами, из которых они сооружаются.

С химической точки зрения эти требования сводятся к отбору элементов, способных образовывать прочные и энергоемкие связи, причем связи лабильные. Указанным условиям отвечает углерод, который способен вмещать и удерживать внутри себя самые редкие химические противоположности. Азот, фосфор, сера как органогены, а также железо и магний, составляющие активные центры ферментов, тоже отличаются лабильностью. Кислород и водород не столь лабильны, но они являются носителями окислительных и восстановительных процессов.

Подобно тому как из всех химических элементов только шесть органогенов и 10-16 других элементов отобраны природой для основы биосистем, так и в ходе эволюции шел отбор химических соединений. Из миллионов органических соединений в построении живого участвуют только несколько сот. Более того, из 100 известных аминокислот в состав белков входят 20 и только по четыре нуклеотида ДНК (дезоксирибонук-леиновая кислота - высокомолекулярное соединение, содержащееся в ядрах клеток живых организмов; вместе с белками образует вещество хромосом, ДНК - носитель генетической информации) и РНК (рибонуклеиновая кислота - высокомолекулярное соединение, участвующее в реализации генетической информации в клетках всех живых организмов) составляют основу всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах.

Из такого узкого круга органических веществ построено все разнообразие мира животных и растений. Полагают, что, когда период химической подготовки сменился периодом биологической эволюции, химическая эволюция в каком-то смысле застыла. Доказательством этого служит тот факт, что аминокислотный состав гемоглобина самых низших позвоночных животных и человека практически один и тот же. Более или менее одинаковыми остаются у разных видов растений состав ферментативных средств, состав веществ, накапливаемых впрок, и т.п.

Одна из важнейших задач науки связана с определением пути химической подготовки, в результате которой из минимума химических элементов и химических соединений образовался сложнейший высокоорганизованный комплекс - био-

система. Это важно выяснить для того, чтобы научиться у природы (а затем, может быть, и пойти дальше ее) приспособлять к своим нуждам <менее организованные материалы>, например синтезировать сахар из С0 2 , СО, Н 2 и Н 2 0 и т.д. Последние научные открытия показывают, что в ходе химической эволюции отбирались те структуры, которые способствовали повышению активности и селективности действия каталитических групп. Первая и наиболее простая структура - различные фазовые границы. Они служили основой физической и химической адсорбции, которая вносила элементарное упорядочение во взаимное расположение частиц, увеличивала их концентрацию и выступала фактором проявления каталитического эффекта. Вторым структурным фрагментом считают группировки, обеспечивающие процессы переноса электронов и протонов, - полупроводниковые цепи и структуры, ответственные за перенос водорода. Третья структура, необходимая для эволюционирующих систем, - группировки, выполняющие задачу энергетического обеспечения; к ним относятся ок-сиоксогруппы, фосфорсодержащие и др.

Следующим фрагментом эволюционирующих систем является развитая полимерная структура типа РНК и ДНК. Она выполняет ряд функций, свойственных перечисленным выше структурам, а главное - роль каталитической матрицы, на которой осуществляется воспроизведение себе подобных структур. В связи с этим привлекает внимание ряд выводов, полученных различными путями в самых разных областях науки (геологии, геохимии, космохимии, термодинамике, химической кинетике). Во-первых, считается, что на ранних стадиях химической эволюции мира катализ отсутствовал. Высокие температуры (намного более 5000 К), электрические разряды и радиация препятствуют образованию конденсированного состояния и перекрывают те порции энергии, которые необходимы для преодоления энергетических барьеров. В о - в т о -р ы х, проявления катализа возможны при смягчении условий образования первичных твердых тел. В-третьих, роль катализатора возрастала по мере того, как условия (главным образом температура) приближались к существующим сейчас на Земле. Но общее значение катализа еще не могло быть высоким вплоть до образования более или менее сложных органи-

ческих молекул. В-четвертых, появление таких относительно несложных систем, как С 3 ОН, СН 2 =СН 2 , НС=СН, Н 2 СО, НСООН, HCsN, а тем более оксикислот, аминокислот и первичных Сахаров, было некаталитической подготовкой старта для большого катализа. В-пятых, роль катализа в развитии химических систем начала сильно возрастать после достижения стартового состояния - известного количественного минимума органических и неорганических соединений. Отбор активных соединений происходил из тех продуктов, которые получались относительно большим числом химических путей и обладали широким каталитическим спектром.

Отличительной чертой функционального подхода к проблеме предбиологической эволюции является концентрация усилий на исследовании самоорганизации материальных систем, на выявлении законов, которым подчиняются такие процессы. Этот подход получил большое распространение у физиков и математиков, рассматривающих эволюционные процессы с позиции кибернетики. Крайней точкой зрения здесь является утверждение о полном безразличии к материалу эволюционных систем, поэтому живые системы, вплоть до интеллекта, могут быть смоделированы, например, из металлических систем.

В 1960-е гг. А.П. Руденко выдвинул общую теорию химической эволюции и биогенеза. Он осуществил синтез рациональных сторон субстратного и функционального подходов. Его теория в комплексе решает вопросы о движущих силах и механизме эволюционного процесса, т.е. о законах химической эволюции, отборе элементов и структур и их причинной обусловленности, химической организации и иерархии химических систем как следствии эволюции. Пока только эта теория может служить основанием эволюционной химии как новой концептуальной системы.

Сущность данной теории состоит в утверждении, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы. В ходе реакции происходит естественный отбор наиболее активных каталитических центров. Те же центры, изменение которых связано с уменьшением активности, постепенно исключаются из кинетического процесса. При многократных последовательных необратимых изме-

нениях катализатора переход его на все более высокие уровни сопровождается эволюцией базисной реакции как за счет изменений состава и структуры катализаторов, функционировавших в начале реакции, так и вследствие дробления химического процесса на элементарные стадии и появления на них новых катализаторов, которые появляются не путем захвата их из внешней среды, а благодаря саморазвитию.

Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью реализуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.

Считается, что саморазвитие, самоорганизация и самоусложнение каталитических систем обусловлены постоянным потоком трансформируемой энергии. А так как главным источником энергии служит базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развивающиеся на основе реакций с самым большим сродством (экзотермические реакции). Таким образом, базисная реакция является не только источником энергии, необходимой для полезной работы в системе, которая направлена против равновесия, но и инструментом отбора наиболее совершенных эволюционных изменений в катализаторе.

Теория саморазвития открытых каталитических систем имеет ряд важных следствий. Во-первых, можно классифицировать этапы химической эволюции, а на этой основе классифицировать катализаторы по уровню их организации следующим образом: кристаллы, близкие к идеальным, - реальные кристаллы после раскристаллизации - реальные кристаллы с включением примесей из сферы реакций - твердые кристаллы с хемосорби-рованными комплексами - гомогенные каталитические системы - микрогетерогенные и коллоидные системы.

Во-вторых, появляется принципиально новый метод изучения катализа как динамического явления, связанного с изменением катализаторов в ходе реакций.

В-третьих, дается конкретная характеристика пределов химической эволюции и перехода от хемогенеза к биогенезу в результате преодоления так называемого второго кинетического предела саморазвития каталитических систем.

В настоящее время набирает потенциал новое направление, расширяющее представление об эволюции химических систем, - нестационарная кинетика, которая занимается теорией управления нестационарными процессами. Развитие химических знаний позволяет надеяться на разрешение многих проблем, стоящих перед человечеством: значительное ускорение химических превращений в <мягких> условиях; осуществление новых, энергетически затрудненных процессов путем сопряжения эндо- и экзотермических реакций; возможность экономии углеводородного сырья и переход от нефти к углю -более распространенному сырьевому источнику. Химия имеет реальные предпосылки для моделирования и интенсификации фотосинтеза; фотолиза воды с получением водорода как самого высокоэффективного и экологически чистого топлива; промышленного синтеза на основе углекислого газа широкого спектра органических продуктов, в первую очередь метанола, этанола, формальдегида и муравьиной кислоты; промышленного синтеза многочисленных фторматериалов. Сегодня созрели условия для создания малоотходных и энергосберегающих промышленных производств.

В 60-х годах 20-го века было установлено экспериментально, что в ходе химической эволюции отбирались те химические структуры, которые способствовали резкому повышению активности и избирательной способности катализаторов. Это позволило профессору МГУ А.П. Руденко в 1964 г. теорию саморазвития открытых каталитических систем, которая по праву можно считать общей теорией хемо- и биогенеза. Сущность этой теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем, и, следовательно, эволюционирующим веществом являются катализаторы.

А.П. Руденко сформулировал и основной закон химической эволюции: с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.

Саморазвитие, самоорганизация систем может происходить только за счет постоянного притока энергии, источником которой является основная, т.е. базисная реакция. Из этого следует, что максимальные эволюционнные преимущества получают каталитические системы, развивающиеся на базеэкзотермических реакций.

Временной период химической эволюции. На ранних стадиях химической эволюции мира катализ отсутствовал. Первые проявления катализа начинаются при понижении температуры до 5000° К и ниже и образовании первичных твердых тел. Полагают также, что когда период химической подготовки, т.е. период интенсивных и разнообразных химических превращений сменился периодом биологической эволюции, химическая эволюция как бы застыла.

Прикладное значение эволюционной химии. Эволюционная химия не только помогает раскрыть механизм биогенеза но и позволяет разработать новое управление химическими процессами, предполагающее применение принципов синтеза себе подобных молекул и создание новых мощных катализаторов, в том числе биокатализаторов – ферментов, а это, в свою очередь, является залогом решения задач по созданию малоотходных, безотходных и энергосберегающих промышленных процессов.

К началу документа

Теории возникновения жизни

Наиболее известными к настоящему времени теориями возникновения жизни на Земле являются следующие.

Креационизм . Согласно этой теории жизнь была создана сверхъестественным существом – Богом в определенное время. Этого взгляда придерживаются последователи почти всех религиозных учений. Однако и среди них нет единой точки зрения по этому вопросу, в частности, по трактовке традиционного христианско-иудейского представления о сотворении мира (Книга Бытия). Одни буквально понимают Библию и считают, что мир и все населяющие его живые организмы были созданы за шесть дней продолжительностью по 24 часа (в 1650 г. архиепископ Ашер, сложив возраст всех людей, упоминающихся в библейской генеалогии, вычислил, что Бог приступил к сотворению мира в октябре 4004 г. до н.э. и закончил свой труд в декабре 23 октября в 9 часов утра, создав человека. При этом, правда, получается, что Адам был сотворен в то время, когда на Ближнем Востоке уже существовала хорошо развитая городская цивилизация ). Другие же не относятся к Библии как к научной книге и считают, что главное в ней – божественное откровение о создании мира всемогущим Творцом в понятной для людей древнего мира форме. Другими словами, Библия не отвечает на вопросы «каким образом?» и «когда?», а отвечает на вопрос «почему?». В широком смысле креационизм допускает, таким образом, как создание мира в его законченном виде, так и создание мира, эволюционирующего по законам, заданным Творцом.

Процесс божественного сотворения мира мыслится как имевший место лишь единожды и поэтому недоступный для наблюдения. Однако для верующего теологическая (божественная) истина абсолютна и не требует доказательств. В то же время, для настоящего ученого научная истина не является абсолютной, она всегда содержит элемент гипотезы. Таким образом, концепция креационизма автоматически выносится за рамки научного – исследования, поскольку наука занимается лишь теми явлениями, которые поддаются наблюдению, могут быть подтверждены или отвергнуты в ходе исследований (принцип фальсифицируемости научных теорий). Другими словами, наука никогда сможет ни доказать, ни опровергнуть креационизм.

Самопроизвольное зарождение . Согласно этой теории жизнь возникала и возникает неоднократно из неживого вещества. Эта теория была распространена в Древнем Китае, Вавилоне, Египте. Аристотель, которого часто называют основателем биологии, развивая более ранние высказывания Эмпедокла об эволюции живого, придерживался теории самопроизвольного зарождения жизни. Он считал, что «..живое может возникать не только путем спаривания животных, но и разложением почвы.». С распространением христианства эта теория оказалась в одной проклятой церковью «обойме» с оккультизмом, магией, астрологией, хотя и продолжала существовать где-то на заднем плане, пока не была опровергнута экспериментально в 1688 г. итальянским биологом и врачом Франческо Реди. Принцип «Живое возникает только из живого» получил в науке название Принципа Реди. Так складывалась концепция биогенеза, согласно которой жизнь может возникнуть только из предшествующей жизни. В середине 19-го века Л. Пастер окончательно опроверг теорию самопроизвольного зарождения и доказал справедливость теории биогенеза.

Теория панспермии . Согласно этой теории жизнь была занесена на Землю извне, поэтому ее, в сущности, нельзя считать теорией возникновения жизни как таковой. Она не предлагает никакого механизма для объяснения первичного возникновения жизни, а простопереносит проблему происхождения жизни в какое-то другое место Вселенной.

Теория биохимической эволюции . Жизнь возникла в специфических условиях древней Земли в результате процессов, подчиняющимся физическим и химическим законам.

Последняя теория отражает современные естественнонаучные взгляды и поэтому будет рассмотрена подробнее.

Согласно данным современной науки возраст Земли составляет примерно 4,5 – 5 млрд. лет. В далеком прошлом условия на Земле коренным образом отличались от современных, что обусловило определенное течение химической эволюции, которая явилась предпосылкой для возникновения жизни. Другими словами, собственно биологической эволюции предшествовала предбиотическая эволюция, связанная с переходом от неорганической материи к органической, а затем к элементарным формам жизни. Это было возможным в определенных условиях, которые имели место на Земле в то время, а именно:

· высокая температура, порядка 4000 О С, · атмосфера, состоящая из водяных паров, СО 2 , СН 3 , NH 3 , · присутствие сернистых соединений (вулканическая активность), · высокая электрическая активность атмосферы, · ультрафиолетовое излучение Солнца, которое беспрепятственно достигало нижних слоев атмосферы и поверхности Земли, поскольку озоновый слой еще не сформировался.

Следует подчеркнуть одно из важнейших отличий теории биохимической эволюции от теории самопроизвольного (спонтанного) зарождения, а именно: согласно этой теории жизнь возникла в условиях, которые для современной биоты непригодны!

К началу документа

Гипотеза Опарина-Холдейна . В 1923 г. появилась знаменитая гипотеза Опарина, сводившаяся к следующему: первые сложные углеводороды могли возникать в океане из более простых соединений, постепенно накапливаться и проводить к возникновению «первичного бульона». Эта гипотеза быстро приобрела вес теории. Надо сказать, что последующие экспериментальные исследования свидетельствовали о правомерности таких предположений. Так в 1953 г. С. Миллер, смоделировав предполагаемые условия древней Земли (высокая температура, ультрафиолетовая радиация, электрические разряды) синтезировал в лабораторных условиях 15 аминокислот, входящих в состав живого, некоторые простые сахара (рибоза). Позднее были синтезированы простые нуклеиновые кислоты (Орджел). В настоящее время синтезированы все 20 аминокислот, составляющих основу жизни.

Опарин предполагал, что решающая роль в превращении неживого в живое принадлежит белкам . Белки способны образовывать гидрофильные комплексы: молекулы воды образуют вокруг них оболочку. Эти комплексы могут обособляться от водной фазы и образовывать так называемые коацерваты (<лат. сгусток, куча) с липидной оболочкой, из которой затем могли образоваться примитивные клетки. Существенный недостаток этой гипотезы – она не опирается на современную молекулярную биологию. Это вполне объяснимо, поскольку механизм передачи наследственных признаков и роль ДНК стали известны сравнительно недавно.

(Английский ученый Холдейн (Кембриджский университет) в 1929 г. опубликовал свою гипотезу, согласно которой, живое также появилось на Земле в результате химических процессов в богатой диоксидом углерода атмосфере Земли, и первые живые существа были, возможно, «огромными молекулами». Он не упоминал ни о гидрофильных комплексах, ни о коацерватах, но его имя часто упоминается рядом с именем Опарина, а гипотеза получила название гипотезы Опарина-Холдейна.)

Решающую роль в возникновении жизни впоследствии отводили появлению механизма репликации молекулы ДНК. Действительно, любая сколь угодно сложная комбинация аминокислот и других сложных органических соединений – это еще не жизнь. Ведь важнейшее свойство жизни – ее способность к самовоспроизведению. Проблема здесь в том, что сама по себе ДНК «беспомощна», она может функционировать только при наличии белков-ферментов (например, молекула ДНК-полимеразы, «расплетающая» молекулу ДНК, подготавливая ее к репликации). Остается открытым вопрос, как самопроизвольно могли возникнуть такие сложнейшие «машины» как пра-ДНК и нужный для ее функционирования сложный комплекс белков-ферментов.

В последнее время разрабатывается идея возникновения жизни на основе РНК , т.е. первыми организмами могли быть РНК, которые, как показывают опыты, могут эволюционировать даже в пробирке. Условия для эволюции таких организмов наблюдаютсяпри кристаллизации глины . Эти предположения основаны, в частности, на том, что при кристаллизации глин каждый новый слой кристаллов выстраивается в соответствии с особенностями предыдущего, как бы получая от него информацию о строении. Это напоминает механизм репликации РНК и ДНК. Таким образом, получается, что химическая эволюция началась с неорганических соединений, и первые биополимеры могли быть результатом автокаталитических реакциймалых молекул алюмосиликатов глины.

К началу документа

Гиперциклы и зарождение жизни . Концепция самоорганизации может способствовать лучшему пониманию процессов происхождения и эволюции жизни, исходя из теории химической эволюции Руденко, рассмотренной ранее и гипотезы немецкого физико-химика М. Эйгена. Согласно последней, процесс возникновения живых клеток тесно связан с взаимодействиемнуклеотидов ( нуклеотиды - элементы нуклеиновых кислот – цитозин, гуанин, тимин, аденин ), являющихся материальными носителями информации , ипротеинов (полипептидов [ 1] ), служащих катализаторами химических реакций. В процессе взаимодействия нуклеотиды под влиянием протеинов воспроизводят самих себя и передают информацию следующему за ними протеину, так что возникаетзамкнутая автокаталитическая цепь , которую М. Эйген назвалгиперциклом . В ходе дальнейшей эволюции из них возникают первые живые клетки, сначала безъядерные (прокариоты), а затем с ядрами – эукариоты.

Здесь, как видим, прослеживается логическая связь между теорией эволюции катализаторов и представлениями о замкнутой автокаталитической цепи. В ходе эволюции принцип автокатализа дополняется принципом самовоспроизведения целого циклически организованного процесса в гиперциклах, предложенного М.Эйгеном. Воспроизведение компонентов гиперциклов, так же как и их объединение в новые гиперциклы, сопровождается усилением метаболизма, связанного с синтезированием высокоэнергетических молекул и выведением как «отбросов» бедных энергией молекул. (Здесь интересно отметить особенности вирусов как промежуточной формы между жизнью и нежизнью: они лишены способности к метаболизму и, внедряясь в клетки, начинают пользоваться их метаболической системой ). Итак, по Эйгену происходит конкуренция гиперциклов, или циклов химических реакций, которые приводят к образованию белковых молекул. Цикла, которые работают быстрее и эффективнее, чем остальные, «побеждают» в конкурентной борьбе.

Таким образом, концепция самоорганизации позволяет установить связь между живым и неживым в ходе эволюции, так что возникновение жизни представляется отнюдь не чисто случайной и крайне маловероятной комбинацией условий и предпосылок для ее появления. Кроме того, жизнь сама готовит условия для своей дальнейшей эволюции .

К началу документа

Контрольные вопросы

1. Перечислите основные этапы образования планет в соответствии с ротационной моделью. 2. Какие общие особенности планет Солнечной системы свидетельствуют об едином происхождении планет? 3. Поясните распространенность химических элементов в солнечной системе. 4. Как происходила дифференциация вещества Земли? Объясните строение Земли. 5. Что такое геохронология?

6. На какие части (по степени изученности) подразделяется история Земли? 7. Какие элементы называются органогенами и почему? 8. Какие элементы образуют химический состав живых систем? 9. Что такое самоорганизация? 10. В чем сущность субстратного и функционального подходов к проблеме самоорганизации химических систем?

11. Что такое эволюционная химия? 12. Что можно сказать о естественном отборе химических элементов и их соединений в ходе химической эволюции? 13. Что означает саморазвитие каталитических систем? 14. В чем заключается прикладное значение эволюционной химии? 15. Перечислите основные теории возникновения жизни.

16. Что такое креационизм? Можно ли опровергнуть креационизм? Объясните ваш ответ. 17. Что является слабым местом теории панспермии? 18. Чем отличается теория биохимической эволюции от теории самопроизвольного (спонтанного) зарождения жизни? 19. Какие условия считаются необходимыми для возникновения жизни в результате биохимической эволюции? 20. Что такое предбиотическая эволюция?

21. В чем заключается гипотеза Опарина - Холдейна? 22. В чем заключается основная проблема объяснения перехода от «неживого» к «живому»? 23. Что такое гиперцикл?

Литература

1. Дубнищева Т.Я. Концепции современного естествознания. - Новосибирск: ЮКЭА, 1997. 2. Кузнецов В.Н., Идлис Г.М., Гутина В.Н. Естествознание. - М.: Агар,1996. 3. Грядовой Д.Н. Концепции современного естествознания. Структурный курс основ естествознания. - М.: Учпед,1999. 4. Концепции современного естествознания /под ред. С.И. Самыгина. - Ростов н/Д: Феникс, 1997. 5. Яблоков А.В., Юсуфов А.Г. Эволюционное учение. – М.: Высшая школа, 1998. 6. Рузавин Г.И. Концепции современного естествознания. – М.: «Культура и спорт», ЮНИТИ, 1997. 7. Солопов Е.Ф. Концепции современного естествознания. – М.: Владос, 1998.

8. Нудельман Р. Кембрийский парадокс. - "Знание - Сила", август, сентябрь-октябрь 1988.

[ 1] полипептиды – длинная цепь аминокислот

К началу документа

Права на распространение и использование курса принадлежат Уфимскому Государственному Авиационному Техническому Университету