Кто создал простые числа. Простое число

Свойства простых чисел впервые начали изучать математики Древней Греции. Математики пифагорейской школы (500 - 300 до н.э.) в первую очередь интересовались мистическими и нумерологическими свойствами простых чисел. Они первыми пришли к идеям о совершенных и дружественных числах.

У совершенного числа сумма его собственных делителей равна ему самому. Например, собственные делители числа 6: 1, 2 и 3. 1 + 2 + 3 = 6. У числа 28 делители - это 1, 2, 4, 7 и 14. При этом, 1 + 2 + 4 + 7 + 14 = 28.

Числа называются дружественными, если сумма собственных делителей одного числа равна другому, и наоборот – например, 220 и 284. Можно сказать, что совершенное число является дружественным для самого себя.

Ко времени появления работы Евклида «Начала» в 300 году до н.э. уже было доказано несколько важных фактов касательно простых чисел. В книге IX «Начал» Эвклид доказал, что простых чисел бесконечное количество. Это, кстати, один из первых примеров использования доказательства от противного. Также он доказывает Основную теорему арифметики – каждое целое число можно представить единственным образом в виде произведения простых чисел.

Также он показал, что если число 2 n -1 является простым, то число 2 n-1 * (2 n -1) будет совершенным. Другой математик, Эйлер, в 1747 году сумел показать, что все чётные совершенные числа можно записать в таком виде. По сей день неизвестно, существуют ли нечётные совершенные числа.

В году 200 году до н.э. грек Эратосфен придумал алгоритм для поиска простых чисел под названием «Решето Эратосфена».

А затем случился большой перерыв в истории исследования простых чисел, связанный со Средними веками.

Следующие открытия были сделаны уже в начале 17-го века математиком Ферма. Он доказал гипотезу Альбера Жирара, что любое простое число вида 4n+1 можно записать уникальным образом в виде суммы двух квадратов, и также сформулировал теорему о том, что любое число можно представить в виде суммы четырёх квадратов.

Он разработал новый метод факторизации больших чисел, и продемонстрировал его на числе 2027651281 = 44021 ? 46061. Также он доказал Малую теорему Ферма: если p – простое число, то для любого целого a будет верно a p = a modulo p.

Это утверждение доказывает половину того, что было известно как «китайская гипотеза», и датируется 2000 годами ранее: целое n является простым тогда и только тогда, если 2 n -2 делится на n. Вторая часть гипотезы оказалась ложной – к примеру, 2 341 - 2 делится на 341, хотя число 341 составное: 341 = 31 ? 11.

Малая теорема Ферма послужила основой множества других результатов в теории чисел и методов проверки чисел на принадлежность к простым – многие из которых используются и по сей день.

Ферма много переписывался со своими современниками, в особенности с монахом по имени Марен Мерсенн. В одном из писем он высказал гипотезу о том, что числа вида 2 n +1 всегда будут простыми, если n является степенью двойки. Он проверил это для n = 1, 2, 4, 8 и 16, и был уверен, что в случае, когда n не является степенью двойки, число не обязательно получалось простым. Эти числа называются числами Ферма, и лишь через 100 лет Эйлер показал, что следующее число, 2 32 + 1 = 4294967297 делится на 641, и следовательно, не является простым.

Числа вида 2 n - 1 также служили предметом исследований, поскольку легко показать, что если n – составное, то и само число тоже составное. Эти числа называют числами Мерсенна, поскольку он активно их изучал.

Но не все числа вида 2 n - 1, где n – простое, являются простыми. К примеру, 2 11 - 1 = 2047 = 23 * 89. Впервые это обнаружили в 1536 году.

Многие годы числа такого вида давали математикам наибольшие известные простые числа. Что число M 19 , было доказано Катальди в 1588 году, и в течение 200 лет было наибольшим известным простым числом, пока Эйлер не доказал, что M 31 также простое. Этот рекорд продержался ещё сто лет, а затем Люкас показал, что M 127 - простое (а это уже число из 39 цифр), и после него исследования продолжились уже с появлением компьютеров.

В 1952 была доказана простота чисел M 521 , M 607 , M 1279 , M 2203 и M 2281 .

К 2005 году найдено 42 простых чисел Мерсенна. Наибольшее из них, M 25964951 , состоит из 7816230 цифр.

Работа Эйлера оказала огромное влияние на теорию чисел, в том числе и простых. Он расширил Малую теорему Ферма и ввёл?-функцию. Факторизовал 5-е число Ферма 2 32 +1, нашёл 60 пар дружественных чисел, и сформулировал (но не смог доказать) квадратичный закон взаимности.

Он первым ввёл методы математического анализа и разработал аналитическую теорию чисел. Он доказал, что не только гармонический ряд? (1/n), но и ряд вида

1/2 + 1/3 + 1/5 + 1/7 + 1/11 +…

Получаемый суммой величин, обратных к простым числам, также расходится. Сумма n членов гармонического ряда растёт примерно как log(n), а второй ряд расходится медленнее, как log[ log(n) ]. Это значит, что, например, сумма обратных величин ко всем найденным на сегодняшний день простым числам даст всего 4, хотя ряд всё равно расходится.

На первый взгляд кажется, что простые числа распределены среди целых довольно случайно. К примеру, среди 100 чисел, идущих прямо перед 10000000, встречается 9 простых, а среди 100 чисел, идущих сразу после этого значения – всего 2. Но на больших отрезках простые числа распределены достаточно равномерно. Лежандр и Гаусс занимались вопросами их распределения. Гаусс как-то рассказывал другу, что в любые свободные 15 минут он всегда подсчитывает количество простых в очередной 1000 чисел. К концу жизни он сосчитал все простые числа в промежутке до 3 миллионов. Лежандр и Гаусс одинаково вычислили, что для больших n плотность простых чисел составляет 1/log(n). Лежандр оценил количество простых чисел в промежутке от 1 до n, как

?(n) = n/(log(n) - 1.08366)

А Гаусс – как логарифмический интеграл

?(n) = ? 1/log(t) dt

С промежутком интегрирования от 2 до n.

Утверждение о плотности простых чисел 1/log(n) известно как Теорема о распределении простых чисел. Её пытались доказать в течение всего 19 века, а прогресса достигли Чебышёв и Риман. Они связали её с гипотезой Римана – по сию пору не доказанной гипотезой о распределении нулей дзета-функции Римана. Плотность простых чисел была одновременно доказана Адамаром и Валле-Пуссеном в 1896 году.

В теории простых чисел есть ещё множество нерешённых вопросов, некоторым из которых уже многие сотни лет:

  • гипотеза о простых числах-близнецах – о бесконечном количестве пар простых чисел, отличающихся друг от друга на 2
  • гипотеза Гольдбаха: любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел
  • бесконечно ли количество простых чисел вида n 2 + 1 ?
  • всегда ли можно найти простое число между n 2 and (n + 1) 2 ? (факт, что между n и 2n всегда есть простое число, было доказан Чебышёвым)
  • бесконечно ли число простых чисел Ферма? есть ли вообще простые числа Ферма после 4-го?
  • существует ли арифметическая прогрессия из последовательных простых чисел для любой заданной длины? например, для длины 4: 251, 257, 263, 269. Максимальная из найденных длина равна 26 .
  • бесконечно ли число наборов из трёх последовательных простых чисел в арифметической прогрессии?
  • n 2 - n + 41 – простое число для 0 ? n ? 40. Бесконечно ли количество таких простых чисел? Тот же вопрос для формулы n 2 - 79 n + 1601. Эти числа простые для 0 ? n ? 79.
  • бесконечно ли количество простых чисел вида n# + 1? (n# - результат перемножения всех простых чисел, меньших n)
  • бесконечно ли количество простых чисел вида n# -1 ?
  • бесконечно ли количество простых чисел вида n! + 1?
  • бесконечно ли количество простых чисел вида n! – 1?
  • если p – простое, всегда ли 2 p -1 не содержит среди множителей квадратов простых чисел
  • содержит ли последовательность Фибоначчи бесконечное количество простых чисел?

Самые большие близнецы среди простых чисел – это 2003663613 ? 2 195000 ± 1. Они состоят из 58711 цифр, и были найдены в 2007 году.

Самое большое факториальное простое число (вида n! ± 1) – это 147855! - 1. Оно состоит из 142891 цифр и было найдено в 2002.

Наибольшее праймориальное простое число (число вида n# ± 1) – это 1098133# + 1.

Вы можете помочь и перевести немного средств на развитие сайта



Разложение натуральных чисел в произведение простых

Алгоритмы поиска и распознавания простых чисел

Простые способы нахождения начального списка простых чисел вплоть до некоторого значения дают Решето Эратосфена , решето Сундарама и решето Аткина .

Однако, на практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются тестами простоты . Существует множество полиномиальных тестов простоты, но большинство их являются вероятностными (например, тест Миллера - Рабина) и используются для нужд криптографии . В 2002 году было доказано, что задача проверки на простоту в общем виде полиномиально разрешима, но предложенный детерминированный тест Агравала - Каяла - Саксены имеет довольно большую вычислительную сложность , что затрудняет его практическое применение.

Для некоторых классов чисел существуют специализированные эффективные тесты простоты (см. ниже).

Бесконечность множества простых чисел

Простых чисел бесконечно много. Самое старое известное доказательство этого факта было дано Евклидом в «Началах » (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так:

Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор. Противоречие .

Математики предлагали другие доказательства. Одно из них (приведённое Эйлером) показывает, что сумма величин, обратных к первым n простым числам, неограниченно растёт с ростом n .

Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты : теста Люка - Лемера . Благодаря ему простые числа Мерсенна давно удерживают рекорд как самые большие известные простые.

За нахождение простых чисел из более чем 100 000 000 и 1 000 000 000 десятичных цифр EFF назначила денежные призы соответственно в 150 000 и 250 000 долларов США . Ранее EFF уже присуждала призы за нахождение простых чисел из 1 000 000 и 10 000 000 десятичных цифр.

Простые числа специального вида

Существует ряд чисел, простота которых может быть установлена эффективно с использованием специализированных алгоритмов.

С использованием теста Бриллхарта-Лемера-Селфриджа (англ. ) может быть проверена простота следующих чисел:

Для поиска простых чисел обозначенных типов в настоящее время используются проекты распределенных вычислений GIMPS , PrimeGrid , Ramsey@Home, Seventeen or Bust , Riesel Sieve, Wieferich@Home.

Некоторые свойства

  • Если - простое, и делит , то делит или . Доказательство этого факта было дано Евклидом и известно как лемма Евклида . Оно используется в доказательстве основной теоремы арифметики .
  • Кольцо вычетов является полем тогда и только тогда, когда - простое.
  • Характеристика каждого поля - это ноль или простое число.
  • Если - простое, а - натуральное, то делится на (малая теорема Ферма).
  • Если - конечная группа с элементов, то содержит элемент порядка .
  • Если - конечная группа, и - максимальная степень , которая делит , то имеет подгруппу порядка , называемую силовской подгруппой , более того, количество силовских подгрупп равно для некоторого целого (теоремы Силова).
  • Натуральное является простым тогда и только тогда, когда делится на (теорема Вильсона).
  • Если - натуральное, то существует простое , такое, что (постулат Бертрана).
  • Ряд чисел, обратных к простым, расходится. Более того, при
  • Любая арифметическая прогрессия вида , где - целые взаимно простые числа , содержит бесконечно много простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).
  • Всякое простое число, большее 3, представимо в виде или , где - некоторое натуральное число. Отсюда, если разность между несколькими последовательными простыми числами (при k>1) одинакова, то она обязательно кратна 6 - например: 251-257-263-269; 199-211-223; 20183-20201-20219.
  • Если - простое, то кратно 24 (справедливо также для всех нечётных чисел, не делящихся на 3) .
  • Теорема Грина-Тао. Существуют сколь угодно длинные конечные арифметические прогрессии, состоящие из простых чисел .
  • n >2, k >1. Иначе говоря, число, следующее за простым, не может быть квадратом или более высокой степенью с основанием, бо́льшим 2. Из этого следует также, что если простое число имеет вид , то k - простое (см. числа Мерсенна).
  • Никакое простое число не может иметь вид , где n >1, k >0. Иначе говоря, число, предшествующее простому, не может быть кубом или более высокой нечётной степенью с основанием, бо́льшим 1 .

содержащий 26 переменных и имеющий степень 25. Наименьшая степень для известных многочленов такого типа - 5 при 42 переменных; наименьшее число переменных - 10 при степени около 15905. Этот результат является частным случаем доказанной Юрием Матиясевичем диофантовости любого перечислимого множества .

Открытые вопросы

Распределение простых чисел p n = f s n ); Δs n = p n +1 ² - p n ². Δp n = p n +1 - p n ; Δp n = 2, 4, 6, … .

До сих пор существует много открытых вопросов относительно простых чисел, наиболее известные из которых были перечислены Эдмундом Ландау на Пятом Международном математическом конгрессе :

Открытой проблемой является также существование бесконечного количества простых чисел во многих целочисленных последовательностях, включая числа Фибоначчи , числа Ферма и т. д.

Приложения

Вариации и обобщения

  • В теории колец , разделе абстрактной алгебры , определено понятие простого элемента и простого идеала .
  • В теории узлов определено понятие простого узла (англ. ), как нетривиального узла , который не может быть представлен в виде связной суммы нетривиальных узлов.

См. также

Примечания

Литература

  • Гальперин Г. «Просто о простых числах» // Квант . - № 4. - С. 9-14,38.
  • Нестеренко Ю. В. Алгоритмические проблемы теории чисел // Введение в криптографию / Под редакцией В. В. Ященко. - Питер, 2001. - 288 с. - ISBN 5-318-00443-1
  • Василенко О. Н. Теоретико-числовые алгоритмы в криптографии . - М .: МЦНМО , 2003. - 328 с. - ISBN 5-94057-103-4
  • Черемушкин А. В. . - М .: МЦНМО , 2002. - 104 с. - ISBN 5-94057-060-7
  • Кноп К. «В погоне за простотой»
  • Кордемский Б. А. Математическая смекалка . - М .: ГИФМЛ, 1958. - 576 с.
  • Генри С. Уоррен, мл. Глава 16. Формулы для простых чисел // Алгоритмические трюки для программистов = Hacker"s Delight. - М .: «Вильямс», 2007. - 288 с. - ISBN 0-201-91465-4
  • Ю. Матиясевич. Формулы для простых чисел // Квант . - 1975. - № 5. - С. 5-13.
  • Н. Карпушина. Палиндромы и «перевёртыши» среди простых чисел // Наука и жизнь . - 2010. - № 5.
  • Д. Цагер. Первые 50 миллионов простых чисел // Успехи математических наук . - 1984. - Т. 39. - № 6(240). - С. 175–190.

Ссылки

  • The Prime Pages (англ.) - база данных наибольших известных простых чисел
  • PrimeGrid prime lists - все простые числа, найденные в рамках проекта PrimeGrid
  • Геометрия простых и совершенных чисел (исп.)

Муниципальное бюджетное общеобразовательное учреждение

города Абакана

«Средняя общеобразовательная школа № 19»

Математика

Простые числа-это просто

Лысова

Эльмира,

6 Б класс

Руководитель:

Быковская

Ирина Сергеевна,

учитель математики

КОД _____________________________

Математика

ПРОСТЫЕ ЧИСЛА - ЭТО ПРОСТО

ОГЛАВЛЕНИЕ:

Введение

Глава 1. Простые числа

1.1. Определение простого числа.

1.2. Бесконечность ряда простых чисел.

1.3. Самое большое простое число.

1.4. Способы определения (поиска) простых чисел.

Глава 2. Применение теории простых чисел

2.1. Примеры некоторых утверждений теории простых чисел известных советских ученых.

2.2.Примеры ряда проблем в теории простых чисел.

2.3. Задачи прикладного характера (№1, №2)

2.4.Задачи на применение законов простых чисел(№3 №,4)

2 .5. Магические квадраты.

2.6.Применение закона простых чисел в различных областях

Заключение

Приложение

«В мире царит гармония,

и выражена эта гармония – в числах»

Пифагор.

ВВЕДЕНИЕ

Математика удивительна. Действительно, доводилось ли кому-либо видеть своими глазами число (не три дерева и не три яблока, а само число 3). С одной стороны, число есть вполне абстрактное понятие. Но, с другой стороны, всё, происходящее в мире, может быть в той или иной степени измерено, а значит, представлено в числах

На уроках математике при изучении темы «Простые и составные числа» меня заинтересовали простые числа, история их возникновения и способы получения. Я обратилась в библиотеку, интернет, где и приобрела нужную литературу. Хорошенько изучив её, я поняла, что существует очень много интересной информации о простых числах. Простые числа, которые были введены примерно две с половиной тысячи лет назад, а нашли неожиданное практическое применение совсем недавно. Узнала, что существуют Законы простых чисел, выраженные через формулу, но есть ряд проблем в теории чисел. Несмотря на то, что сейчас мы живем в век компьютеров и самых современных информационных программ, многие загадки простых чисел не решены до сих пор, есть даже такие, к которым ученые не знают, как подступиться. Знание открытых законов позволяет создать качественно новые решения во многих областях, интересуют как ученых, так и простых граждан. Тема заинтересовала и меня. Объектом исследования являются исключительно абстрактное понятие – простое число . Предметом изучения простого числа послужили: теория о простых числах, способы их задания, интересные открытия в этой области и их применение в практических целях.

Целью моей работы является расширение представлений о простых числах. Определила следующие задачи:

    познакомиться с историей развития теории о простых числах,

    сформировать общее представление о способах нахождения простых чисел,

    узнать интересные достижений советских ученых в области теории простых чисел,

    рассмотреть некоторые проблемы в теории простых чисел,

    познакомиться с применения теории простых чисел в различных областях,

    понять принцип выделения простых чисел из натурального ряда с помощью способа «Решето Эратосфена» в пределах до 100; 1000,

    изучить применение простых чисел в задачах.

I . ПРОСТЫЕ ЧИСЛА

    1. Понятие простого числа

Простые числа - одно из чудес математик. Один, два, три... С этими словами вступаем мы в страну чисел, она не имеет границ. С виду плоские, близкие числа при более близком знакомстве с ними опаляют нас своим внутренним жаром, обретают глубину.

С разложением чисел на множители мы знакомы с начальной школы. При отыскании общего знаменателя приходится разлагать на множители знаменатели слагаемых. Разлагать на множители приходится при сокращении дробей. Одно из основных утверждений арифметики гласит: каждое натуральное число единственным образом разлагается на простые множители.

72 = 2x2x2x3x3

1001 = 7 х 11 х 13

Разложение чисел на простые множители показывает, что всякое число является либо простым, либо произведением двух или нескольких простых чисел. Поэтому можно сказать, что простые числа являются составными элементами натуральных чисел, как бы кирпичами, из которых, при помощи действия умножения, составляются все целые числа.

Простым числом называется натуральное число, имеющее только два различных делителя (само число и 1).

Несколько любопытных фактов.

Число 1 не является простым числом и не составным.

Единственным четным числом, попавшим в группу «простые числа» является двойка. Любое другое четное число сюда попасть попросту не может, так как уже по определению, кроме себя и единицы, делится еще и на два.

Простые числа не появляются в натуральном ряду беспорядочно, как это может показаться на первый взгляд. Внимательно проанализировав их, можно сразу заметить несколько особенностей, наиболее любопытны числа - «близнецы»- простые числа, разность между которыми равна2 . Называют их так потому, что они оказались по соседству друг с другом, разделенные только четным числом (пять и семь, семнадцать и девятнадцать). Если внимательно к ним присмотреться, то можно заметить, что сумма этих чисел всегда кратна трем. Пары близнецов с общим элементомобразуют пары простых чисел - «двойников» (три и пять , пять и семь).

    1. Бесконечность ряда простых чисел.

Издавна бросалась в глаза нерегулярность распределения простых чисел среди всех натуральных чисел. Было замечено, что по мере продвижения от малого числа к большему в натуральном ряду простые числа встречаются всё реже. Поэтому одним из первых вопросов был такой: существует ли последнее простое число, то есть, имеет ли ряд простых чисел конец? Около 300 лет до нашей эры на этот вопрос дал отрицательный ответ знаменитый древнегреческий математик Евклид. Он доказал, что за каждым простым числом имеется, ещё большее простое число, то есть, существует бесчисленное множество простых чисел.

Самое старое известное доказательство этого факта было дано в « » (книга IX, утверждение 20).

Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.

Итак, нельзя принять, что ряд простых чисел конечен: предположение это приводит к противоречию. Таким образом, какую бы длинную серию последовательности составных чисел мы не встретили в ряду натуральных чисел, мы можем быть убеждены в том, что за нею найдется ещё бесконечное большее число.

Математики предлагали и другие доказательства.

1.3.Самое большое простое число.

Одно дело быть уверенным в том, что существуют какие угодно большие простые числа, а другое дело - знать, какие числа являются простыми. Чем больше натуральное число, тем больше вычислений надо провести, чтобы узнать, является ли оно простым или нет.

Издавна ведутся записи, отмечающие наибольшие известные на то время простые числа. Один из рекордов поставил в своё время Эйлер в ХVIII столетии, он нашел простое число 2147483647.

Наибольшим известным простым число-рекордсмен по состоянию на июнь 2009 года является 2 в степени 43112609 – 1 (открыл Купера из Университета Центрального Миссури в СШ А). Оно содержит 12 978 189 и является простым . Благодаря этому ученому простые числа Мерсенна давно удерживают рекорд как самые большие известные простые. Чтобы их определить, потребовалось 75 мощных компьютеров.

Числа вида: 2 в степени n минус 1 , где n тоже простое число, относятся к числам Мерсенна . Купера сделал новое математическое открытие в 2013 г.. Ему удалось найти самое длинное простое число в мире. Записано оно следующим образом – 2 в степени 57885161 - 1. Число содержит более 17 миллионов цифр. Для того чтобы распечатать его на бумаге понадобится более 13 тысяч страниц формата А4.
Теперь новый рекорд в классе простых чисел Мерсенна записывается как
2 в степени 57885161 - 1 , в нём 17425170 цифр. Открытие нового рекордсмена принес Куперу денежный приз в размере 3 тысяч долларов

Фонд Электронных Рубежей также обещает наградить 150 и 250 тысячами долларов США людей, которые представят миру простые числа, состоящие из 100 миллионов и миллиарда символов

    1. Способы определения (поиска) простых чисел.

а) Решето Эратосфена.

Существуют различные способы поиска простых чисел. Первый, кто занимался задачей «выписать из множества натуральных чисел простые», был великий греческий математик древности Эратосфен, живший почти 2 300 лет назад. Он придумал такой способ: записал все числа от единицы до какого-то числа, а потом вычеркнул единицу, которая не является ни простым, ни составным числом, затем вычеркивал через одно все числа, идущие после 2 (числа, кратные двум, т.е. 4,6,8 и т.д.). Первым оставшимся числом после 2 было 3. Далее вычеркивались через два все числа, идущие после трех (числа, кратные 3, т.е. 6, 9, 12, и т.д.), в конце концов оставались не вычеркнутыми только простые числа: 2, 3, 5, 7, 11, 13,….

Таким образом, Эратосфен изобрёл способ, посредством которого можно отсеять все простые числа от 1 до некоторого определённого числа путем вычленения всех чисел кратных каждому простому числу. Этот способ называется «Решето Эратосфена». - самый простой способ нахождения начального списка простых чисел вплоть до некоторого значения.

Греки делали записи на покрытых воском табличках или на папирусе, а числа не вычёркивали, а выкалывали иглой, то таблица в конце вычислений напоминала решето.

Возможно, ли распознать простое число, как говорится, с первого взгляда? Если зачерпнуть в сито сразу много чисел, сверкнет ли среди них простое, как золотой самородок? Некоторые считают, что да. Например, числа, оканчивающиеся на 1, часто оказываются искомыми, скажем, такие как 11, 31, 41. Однако при этом следует быть осторожным и не принять фальшивое золото за чистое, как, скажем, 21 или 81. По мере роста величины чисел, единица на конце все чаще вводит нас в заблуждение. Создается даже впечатление будто простые числа, в конце концов, просто исчезают, как полагали некоторые древние греки.

б) Составление таблиц способом «Решета Эратосфена»

а) Решето Эратосфена, как теоретический метод исследования, в теории чисел был введен в 1920 году Норвежским математиком В.Бруном. Используя этот способ, ученые составили таблицы простых чисел между 1 и 12 000 000

Истинным героем в составлении таблицы простых чисел является профессор Чешского университета в Праге Якуб Филип Кулик (1793-1863).

Он, не имея никаких видов на печатание своего труда, составил таблицу делителей чиселпервых ста миллионов , точнее чисел до 100 320 201 , и поместил её в библиотеке Венской Академии наук для пользования работающими в этой области.

Мы на уроках математики пользуемся таблицей, приведенной на форзаце учебника в пределах 1000.

в) Составление таблиц с помощью вычислительной техники

Внедрение средств вычислительной техники в теоретическую и прикладную математику существенно облегчило решение задач, связанных с трудоёмкими расчётами.

В память достаточно сложных компьютеров можно заложить табличные данные любого объёма, однако такими возможностями пока ещё не обладают калькуляторы индивидуального пользования. Поэтому над проблемами составления компактных и удобных таблиц, предназначенных, в частности, для анализа чисел, продолжают работать специалисты-математики.

Применение для этой цели вычислительных машин позволило сделать весьма существенный шаг вперёд. Например, современная таблица чисел, для составления которой была привлечена вычислительная техника, охватывает числа до 10 000 000 . Это довольно объёмистая книга.

На практике вместо получения списка простых чисел зачастую требуется проверить, является ли данное число простым. Алгоритмы, решающие эту задачу, называются .

Использование специализированных алгоритмов по определению простоты числа (является ли число простым?) позволяет осуществить поиски простого числа в заданных пределах натурального ряда чисел.

д) Открытие века – Закон простыхчисел

Еще в глубокой древности ученых интересовал вопрос о том, по какому закону расположены в натуральном ряду простые числа. Русский Пифагор – Владимир Хренов – своим открытием Закона простых чисел произвел шок в научном мире. Этот закон не только возвращает математику в правильное русло, но и объясняет многие законы природы с точки зрения истинного познания мира. Русский гений, Владимир Хренов сделал научное открытие , которое переворачивает существующее представление о времени и пространстве , что простые числа - это не хаос .

Простые числа получаются по формуле: «6Х плюс-минус 1» , где Х любое натуральное число.

13=6 *2-1; 13=6 *2-1; 19=6 *3+1; 31=6 *5+1;

Открытие было сделано 30 апреля 2000 года. Это была юбилейная Пасха Воскресения Христа. Знаменательная дата. В этот день открылась истинная модель реального пространства и времени. 7 января 2001 года был описан закон простых чисел, а вместе с ним – закономерности формирования всех чисел натурального ряда. Так вот, после открытия закона простых чисел стало понятно, что е диница – эталон пространства, шесть – эталон времени, а в совокупности два эталона пространства и времени творят все многообразие природы и являются вечной первопричиной всего . Теперь, после открытия Закона простых чисел, стало ясно, что они образуются научное обоснование магии числа 7. Данный закон имеет не только колоссальное мировоззренческое, но позволяет создавать технологии защиты информации нового поколения, основанные на данной теории. Для создания нового нужно новое простое число. Вот почему математикам, открывшим его, выплачивают такие огромные суммы.

    ПРИМЕНЕНИЕ ТЕОРИИ ПРОСТЫХ ЧИСЕЛ

    1. Примеры некоторых утверждений теории простых известных советских ученых по теории простых чисел.

Хотя со времени Евклида прошло более двух тысяч лет, к его теории ничего нового не добавилось. Простые числа в натуральном ряду располагаются чрезвычайно прихотливо. Однако, существует огромное количество загадок, связанных с простыми числами.

Большие заслуги в области изучения простых чисел принадлежат русским и советским математикам. Меня заинтересовали простые и в то же время удивительные утверждения, которые доказали в этой области известные советские ученые. Я их рассмотрела и привела ряд примеров, подтверждающих истину высказываний.

П.Л.Чебышев (1821-1894) доказал, что между любым натуральным числом больше 1, и числом вдвое больше данного, всегда имеется хотя бы одно простое число.

Рассмотрим следующие пары простых чисел, удовлетворяющих этому условию.

Примеры:

    и 4 - простое число 3.

    и 6 - простое число 5.

10 и 20 -простые числа 11; 13; 17; 19.
5 и 10 - простое число 7.

7 и 14 - простые числа 11; 13.

11 и 22 - простые числа 13; 17; 19.

Вывод : действительно, между любым натуральным числом больше 1 и числом вдвое больше данного, имеется хотя бы одно простое число.

Христиан Гольдбак, член Петербургской академии наук, почти 250 лет назад высказал предложение, что любое нечетное число больше 5, можно представить в виде суммы трех простых чисел.

Примеры:

21 = 3 + 7 + 11,

37 = 17 + 13 + 7,

23= 5 + 7 + 11,

29= 11 + 13 + 5,

Виноградов ИМ. (1891-1983), советский математик, доказал это предложение лишь 200 лет спустя.

7 = 2 + 2 + 3, 15 = 3 + 5 + 7 = 5 + 5 + 5,

9 = 3+3 + 3, 20 = 7 + 11 + 2.

Но утверждение « Любое четное чисто, больше 2, можно представить в виде суммы двух простых чисел » до сих пор не доказано.

Примеры:

28= 11 + 17, 924 = 311 + 613,

56= 19 + 37, 102 = 59 + 43.

2.2 Примеры ряда проблем в теории простых чисел.

Проблема отсутствия закономерностей распределения простых чисел занимает умы человечества еще со времен древнегреческих математиков. Благодаря Евклиду мы знаем, что простых чисел бесконечно много. Эрастофен, Сундарам предложили первые алгоритмы тестирования чисел на простоту. Эйлер, Ферма, Лежандр и многие другие известные математики пытались и пытаются по сей день разгадать загадку простых чисел. На сегодняшний момент найдено и предложено множество изящных алгоритмов, закономерностей, но все они применимы лишь для конечного ряда простых чисел или простых чисел специального вида. Передним же краем науки в исследованиях простых чисел на бесконечности считается доказательство . Она входит , за доказательство или опровержение которой математическим институтом Клэя предложена премия в 1.000.000 $.

Наиболее известные проблемы простых чисел были перечислены на Пятом . Сегодня ученые говорят о 23 проблемах.

Мне удалось рассмотреть 4 из них, привести ряд примеров по каждой проблеме.

Первая проблема Ландау (проблема Гольдбаха):

доказать или опровергнуть:

Каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел.

Примеры:

8 = 3+5,

12 = 5+7,

16=13 +3, 17= 11+3+3,

24=19+5, 21=11+7+3

50 = 13+37

Вторая проблема Ландау (проблема Гольдбаха) :

бесконечно ли множество «простых близнецов» - простых чисел, разность между которыми равна 2?

а) Определила следующие числа «близнецы»:

3 и 5; 5 и 7; 7 и 9; 11 и 13, 17 и 19; 41 и 43;

б). Пары близнецов состоят из двойников с общим элементом. Мне удалось найти следующие пары близнецов - «двойников»

Решение:

(3, 5) и (5, 7);

Известно, что простых чисел бесконечно много. Но никто не знает, конечно, или бесконечно множество пар близнецов.

Третья проблема Ландау (гипотеза )

верно ли, что между числами вида n2 и (n + 1)2 всегда найдётся простое число?( n – нечетное число)

Решение:

а) при n =3, получим 6 и 8, между ними простое число 7.

б) при n =5, получим 10 и 12, между ними простое число 11.

в) при n =9, получим 18 и 20, между ними простое число 19.

4.Четвёртая проблема Ландау:

бесконечно ли множество простых чисел вида n2 + 1?

Решение:

при n =1, то имеем 3; при n =2, то имеем 5; при n =3, то имеем 7

при n =5, то имеем 11, при n =6 то имеем 13; при n =8, то имеем 17 и т.д.

2.3. Задачи прикладного характера

Задача 1. С помощью решета Эратосфена определите сколько простых чисел находится от 1 до 100.

Решение:

Для этого выпишем все числа от 1 до 100 вряд. .

Будем вычеркивать числа, которые не являются простыми. Вычеркнем 1,так как это не простое число. Первое простое число 2.

Подчеркнем его и вычеркнем все числа кратные 2, то есть числа 4, 6, 8... 100 следующее простое число 3. Подчеркнём его и вычеркнем числа кратные 3, которые остались не вычеркнутыми, то есть числа 9 ? 15, 21 ... 99. Затем подчеркнем простое число 5 и вычеркнем все числа кратные 5. Числа 25...95. И так далее, пока не останется одно простое число 97.

Вывод: Между 1 и 100 находится 25 простых чисел, то есть числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. (Приложение 1)

Задача 2. Чтобы получить список простых чисел, меньше 1000 надо «отсеять» числа, которые делятся на 2, 3, 5, 7, 11 … На каком числе при этом можно остановиться?

Решение:

Используя метод Эратосфена, мной была проведена аналогичная

работа по отсеиванию составных чисел в пределах до 1000.

Вывод: чтобы получить простые чисел до 1000 можно остановиться на простом числе 31 (вычеркнуть числа кратные 31). (Приложение 2)

2.4.Задачи на применение законов простых чисел

Задача 3. Как с помощью двух проверок показать, что число 19 – простое?

Решение представлено в приложении 3.

Задача 4. Как с помощью трёх проверок показать, что число 47 – простое?

Решение представлено в приложении 4.

2.5 Магические квадраты .

Простым числам посвящено множество занимательных математических задач в применении квадратных матриц – магических квадратов, у которых суммирование элементов по любой строке, любому столбцу и двум главным диагоналям дает одно и то же число.

Первый из них была придуман Генри Эрнестом Дьюдни, известным английским специалистом по головоломкам.

Существуют ли магические квадраты, состоящие только из простых чисел? Оказывается, да.

Я изучила магические квадраты размером 3х3, 4х4., 6х6.Определила сумму вдоль каждой строки, каждого столбца и каждой главной диагонали каждого из этих квадратов. Решение представлено в приложении 5.

вдоль каждой строки, каждого столбца и каждой главной диагонали. привожу примеры квадратов, с матрицей 3х3, 4х4, 6х6.

1

67

43

37

13

61

73

31

7

3

61

19

37

43

31

5

41

7

11

73

29

67

17

23

13


3

1

3

9

9

1

9

8

3

9

2

9

1

6

4

3

1

2

5

1

7

4

7

1

7

1

5

9

7

1

9

3

7

3

3

9

Вывод :

1.Магический квадрат 1 размером 3х3 имеет сумму 111 (между прочим, тоже не простое число)

2. Магический квадрат 2 размером 4х4 имеет сумму?

3. Магический квадрат 3 размером 6х6 имеет сумму?

3.4. Применение закона простых чисел в различных областях.

Простые числа являются не только объектом пристального рассмотрения со стороны математиков всего мира, но уже давно и успешно используются в составлении различных рядов чисел, что является основой, в том числе, для шифрографии. Знание законов позволило дать такие запатентованные технические решения защиты передачи информации, которые на существующем математическом базисе считались просто невозможными. Простые числа необходимы для создания шифров. Рано или поздно всякий шифр рассекречивается.

Здесь ученые обращаются к одному из важнейших разделов информатики – к криптографии . Если так трудно найти следующее простое число, то где и для чего эти числа можно использовать на практике?» Наиболее распространенным примером использования простых чисел является применение их в криптографии (шифровании данных). Самые безопасные и трудно дешифруемые методы криптографии основаны на применении простых чисел, имеющих в составе более трех сотен цифр.

Я попробовала проиллюстрировать проблему, с которой сталкивается дешифровщик для расшифровки некоего пароля. Допустим, паролем является один из делителей составного числа, а дешифровщиком выступает человек. Возьмем число из первого десятка, например, 8. Каждый (я надеюсь) человек способен в уме разложить число 8 на простые множители – 8=2*2*2. Усложним задачу: возьмем число из первой сотни, например, 111. В этом случае 111 быстро разложат в уме на множители люди, знающие признаки делимости числа на 3 (если сумма цифр числа кратна 3, то данное число делится на 3), и действительно - 111=3*37. Усложняя задачу, возьмем число из первой тысячи, например 1207. Человеку (без использования машинной обработки) потребуется, как минимум, бумага и ручка, для того чтобы перепробовать деление числа 1207 на «все» предшествующие этому числу простые числа. И только перебрав последовательно деление 1207 на все простые числа от 2 до 17 человек, наконец то, получит второй целый делитель данного числа – 71. Однако и 71 необходимо так же проверить на простоту.

Становится понятно, что с увеличением разрядности чисел, например, пятизначного числа - 10001, разложение (в нашем примере дешифровка пароля) без машинной обработки займет большое количество времени. Современный этап развития компьютерной техники (доступный рядовому пользователю) позволяет за считанные секунды раскладывать на множители числа, состоящие из шестидесяти цифр.

Задумайтесь, сколько жизней должен прожить человек, чтобы разложить данное число на простые множители без помощи машин!

На сегодняшний день разложить числа, состоящие из тысячи и более цифр, за соизмеримое с человеческой жизнью время, способны только ! Именно с их помощью ученные находят все новые и новые, , простые числа.

Я узнала, что знание открытых законов позволит создать качественно новые решения в следующих областях:

    Сверх защищённая операционная система для банков и корпораций.

    Система борьбы с контрафактной продукцией и поддельными денежными знаками.

    Система дистанционной идентификации и борьбы с угонами автотранспорта.

    Система борьбы с распространением компьютерных вирусов.

    Компьютеры нового поколения на нелинейной системе счисления природы.

    Математико-биологическое обоснование теории гармонии восприятий.

    Математический аппарат для нано – технологий.

ЗАКЛЮЧЕНИЕ.

В ходе работы над данной темой мне удалось расширить представление о простых числах по следующим направлениям:

    изучила интересные стороны развития теории простых чисел, познакомилась с новыми достижениями ученых доступные для моего понимания в этой области и практическом ее применении,

    сформировала общее представление о способах нахождения простых чисел, освоила принцип выделения простых чисел из натурального ряда с помощью способа «Решето Эратосфена» в пределах до 100; 1000,

    изучила применение теории простых чисел в задачах,

    познакомилась с применением теории простых чисел в различных областях.

В ходе написания работы мне удалось освоить два способа получения ряда простых чисел:

    практический способ – отсеивание (решето Эратосфена),

    аналитический способ – работа с формулой (закон простых чисел).

В рамках исследования:

    сделала самостоятельно проверку ряда математических утверждений путем подстановки значений, получив верные математические выражения,

    определила ряд чисел «Двойники» и «Близнецы»,

    составила ряд числовых выражений, обозначенных в проблемах Ландау,

    проверила, что квадраты с матрицей 3х3, 4х4., 6х6 магические,

    решила две задачи двумя способами на применение закона простых чисел и утверждений.

В процессе работы над темой я убедилась в том, что простые числа остаются существами, всегда готовыми ускользнуть от исследователя. Простые числа есть «сырой материал» из которого формируется арифметика, и что существуют неограниченные запасы этого материала.

Меня заинтересовали специалисты в области криптографии, которые с недавних пор пользуются известным спросом в секретных организациях. Именно они находят все новые и новые большие простые числа для постоянного обновления списка возможных ключей и стараются выявить все новые закономерности в распределении простых чисел. Простые числа и криптография - это моя дальнейшая тема по изучению теории простых чисел.

Считаю, что работа может быть использована на во внеурочной деятельности, на факультативных занятиях учащихся 6-7 классов, как дополнительный материал к урокам математики в 6 классе при подготовке сообщений по теме. Тема исследования очень интересна, актуальна, не имеет границ изучения, должна вызвать широкий интерес у учащихся.

Библиографический список

    // . - 1975. - № 5. - С. 5-13.

    Н. Карпушина. // . - 2010. - № 5.

    Энрике Грасиан - "Простые числа. Долгая дорога к бесконечности" серия "Мир математики" том.3 Де Агостини 148с, 2014

Введение

Простое число -- это натуральное число, которое имеет ровно два различных натуральных делителя: единицу и самого себя. Все остальные числа, кроме единицы, называются составными. Таким образом, все натуральные числа, бомльшие единицы, разбиваются на простые и составные. Изучением свойств простых чисел занимается теория чисел.

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы, представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа -- элементарные «строительные блоки» натуральных чисел.

Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа.

Из истории простых чисел

Греческий математик Эратосфен, живший более чем за 2000 лет до н.э., составил первую таблицу простых чисел. Эратосфен родился в городе Кирене, получил образование в Александрии под руководством Каллимаха и Лисания, в Афинах слушал философов Аристона Хиосского и Аркесилая, тесно сблизился со школой Платона. В 246г. до.н.э., после смерти Каллимаха, царь Птолемей Эвергет вызвал Эратосфена из Афин и поручил ему заведовать Александрийской библиотекой. Эратосфен работал во многих областях науки: филология, грамматика, история, литература, математика, хронология, астрономия, география и музыка.

Для отыскания простых чисел Эратосфен придумал такой способ. Он записал все числа от 1 до какого-то числа, а потом вычеркнул единицу, которая не является ни простым, ни составным числом, затем вычеркивал через одно все числа, идущие после 2 (числа, кратные 2, т.е. 4,6,8, и т.д.) . Первым оставшимся числом после 2 был 3. Далее вычеркивались все числа кратные 3, т.е. 6,9,12, и т.д. В конце концов оставались невычеркнутыми только простые числа. (рис.1)

Так как греки делали записи на покрытых воском табличках или на натянутом папирусе, а числа не вычёркивали, а выкалывали иглой, то таблица в конце вычислений напоминала решето. Поэтому метод Эратосфена называют решетом Эратосфена: в этом решете «отсеиваются» простые числа от составных. Таким способом в настоящее время составляют таблицы простых чисел, но уже с помощью вычислительных машин.

Простые числа в природе и их использование человеком

1) Периодические цикады

Люди изменили окружающий нас мир, построили невероятные города, и разработали впечатляющие технологии, которые привели к появлению современного мира. Спрятанный под внешней оболочкой планеты, где мы живем, невидимый мир состоит из чисел, последовательностей и геометрии. Математика - это код, который придает смысл всей вселенной.

В лесах Теннеси этим летом часть кода, о котором идет речь, в прямом смысле слова выросла прямо из земли. Каждые 13 лет примерно на 6 недель хор насекомых очаровывает всех, кто становится свидетелем этого редкого природного явления. Выживание этих цикад, которых можно найти только в восточных регионах северной Америки, зависит от странных свойств некоторых из самых фундаментальных чисел в математике - простых чисел, чисел, делящихся только на самих себя и других.

Цикады появляются здесь периодически, но их появление всегда происходит в те года, числа которых состоят из простых чисел. В случае с выводком, который появился вокруг Нэшвилле в этом году, то с момента их прошлого появления прошло 13 лет. Выбор 13-детнего цикла не кажется случайным. В разных частях северной Америки есть еще два выводка, жизненный цикл которых также составляет 13 лет. Они возникают в разных регионах и в разные года, но между появлениями этих живых существ проходит ровно 13 лет. Вдобавок, существует еще 12 выводков насекомых, которые появляются через каждые 17 лет.

Вы можете принять эти числа за совершенно случайные. Но это очень любопытно, что не существует цикад с циклом жизни, равным 12, 14, 15, 16 или 18 лет. Однако, посмотрите на этих цикад глазами математика и картина начинает проясняться. Потому, что числа 13 и 17 оба являются неделимыми, это дает цикадам эволюционные преимущества между другими животными, циклы жизни которых являются периодическими, а не простыми числами. Возьмем, к примеру, хищника, который появляется в лесах каждые шесть лет. Тогда восьми- или девятилетние циклы жизни цикад будут совпадать с циклами жизни хищников, в то время как семилетние циклы жизни будут совпадать с циклом жизни хищника намного реже.

Эти насекомые вмешались в математический код, чтобы выжить.

2) Криптография

Цикады обнаружили пользу использования простых чисел для своего выживания, однако люди поняли, что эти числа являются не только ключом к выживанию, но и огромным количеством строительного материала в математике. Каждое число, по сути, представляет собой совокупность простых чисел, а совокупность чисел составляет математику, а из математики вы получите целый научный мир.

Простые числа находят спрятанными в природе, но человечество научилось их использовать.

Понимание фундаментального характера этих чисел и использование их свойств людьми, в буквальном смысле поставило их в основу всех кодов, которых охраняют мировые кибер-секреты.

Криптография, благодаря которой наши кредитные карточки остаются в безопасности, когда мы покупаем что-нибудь онлайн, использует те же числа, которые защищают цикад в Северной Америке - простые числа. Каждый раз, когда вы вводите номер своей кредитной карты на вебсайте, вы полагаетесь на то, что простые числа сохранят ваши тайны и информацию о вас в секрете. Для кодирования вашей кредитной карты ваш компьютер получает публичный номер Н с вебсайта, который и будет использоваться для совершения операций с вашей кредитной картой.

Это перемешивает ваши данные так, что закодированное письмо может быть послано через интернет. Вебсайт использует простые числа, на которые делят число Н, чтобы раскодировать послание. Хотя Н является открытым числом, простые числа, из которых оно состоит, являются секретными ключами, которые расшифровывают данные. Причиной, по которой такое кодирование является настолько безопасным, является то, что очень легко перемножить простые числа между собой, но разложить число на простые практически невозможно.

3) Загадки простых чисел

Простые числа являются атомами арифметики, гидрогеном и оксигеном мира чисел. Но вопреки их фундаментальному характеру, они также являют собой одну из самых больших загадок математики. Потому что, проходя по вселенной чисел практически невозможно предсказать, где вы встретите следующее простое число.

Мы знаем, что количество простых чисел уходит в бесконечность, но поиск закономерности появления простых чисел является самой большой загадкой математики. Приз в миллион долларов обещан тому, кто сможет раскрыть тайну этих чисел. Загадка о том, когда первый раз цикады начали пользоваться простыми числами, чтобы выжить является такой же сложной, как и сама загадка простых чисел.

Простые числа - «капризны». Таблицы простых чисел обнаруживают большие «неправильности» в распределении простых чисел

Пестрота картины распределения простых чисел увеличивается еще более, если отметить, что существуют пары простых чисел, которые отделены в натуральном ряду только одним числом («близнецы»). Например. 3 и 5, 5 и 7, 11 и 13, 10016957 и 10016959. С другой стороны, существуют пары простых чисел, между которыми много составных. Например, все 153 числа от 4652354 до 4652506 являются составными.

За нахождение простых чисел из более чем 100 000 000 и 1 000 000 000 десятичных цифр EFF назначила денежные призы соответственно в 150 000 и 250 000 долларов США.

Числа преследуют человека везде. Даже наше тело созвучно их миру - мы имеем определенное количество органов, зубов, волос и кожных клеток. Счет стал привычным, автоматическим действием, поэтому сложно представить, что когда-то люди не знали цифр. На самом деле история возникновения чисел прослеживается с самых древних времен.

Числа и первобытные люди

В какой-то момент человек ощутил большую потребность в счете. На это его

подтолкнула сама жизнь. Необходимо было каким-то образом организовывать племя, отправляя на охоту или собирательство только определенное количество человек. Поэтому для счета пользовались пальцами на руках. До сих пор есть племена, которые вместо цифры «5» показывают одну руку, а вместо десяти - две. С такого простого алгоритма счета и начала развиваться история возникновения чисел.

Простые числа

История возникновения чисел позволяет заметить, что люди довольно давно обнаружили разницу между нечетной и четной цифрой, а также различные взаимосвязи внутри самих числовых выражений. Немалый вклад в подобные
исследования внесли древние греки. Например, греческий ученый Эратосфен создал довольно легкий способ поиска простых чисел. Для этого он записывал нужное количество цифр по порядку, а потом начинал вычеркивать - сначала все числа, которые можно делить на два, потом - на три. В результате получался список цифр, которые ни на что не делятся, кроме единицы и себя самого. Этот метод был назван «решето Эратосфена» из-за того, что греки не вычеркивали, а выкалывали ненужные числа на табличках, покрытых воском.

Таким образом, история возникновения чисел - явление древнее и глубинное. По оценкам ученых, оно началось еще около 30 тысяч лет назад. За это время в жизни человека успело поменяться многое. Но и по сей день руководит нашим бытием.