Простой импульсный бп для усилителя. Импульсный источник питания для умзч - ir2161 se

Приветик всем!!!
Представляю вашему вниманию испытанную мной схему достаточно простого импульсного сетевого блока питания УМЗЧ. Мощность блока составляет около 180 Вт.

Краткие характеристики ИБП

Входное напряжение - 220В;
Выходное напряжение - ±25В;
Частота преобразования - 27кГц;
Максимальный ток нагрузки - 3,5А.

Схема импульсного блока питания

Схема достаточно проста:

Она представляет из себя полумостовой инвертор с переключающим насыщаюшимся трансформатором. Конденсаторы С1 и С2 образуют делитель напряжения для одной половины полумоста, а так же сглаживают пульсации сетевого напряжения. Второй половиной полумоста являются транзисторы VT1 и VT2, управляемые переключающим трансформатором Т2. В диагональ моста включена первичная обмотка силового трансформатора Т1, который рассчитан так что он не насыщается во время работы.

Для надёжного запуска преобразователя, применён релаксационный генератор на транзисторе VT3, работающем в лавинном режиме.
Кратко принцип его работы. Конденсатор С7 заряжается через резистор R3, при этом напряжение на коллекторе транзистора VT3 пилообразно растёт. При достижении этого напряжения примерно 50 – 70В, транзистор лавинообразно открывается, и конденсатор разряжается через транзистор VT3 на базу транзистора VT2 и обмотку III трансформатора Т2, тем самым запуская преобразователь.

Конструкция и детали ИБП

Блок питания собран на печатной плате из одностороннего стеклотекстолита.
Чертёж платы не привожу, так как у каждого в заначке свои детали. Ограничусь лишь фото своей платы:

По моему, утюжить такую плату не имеет смысла, она слишком простая.

В качестве транзисторов VT1 и VT2 можно применить отечественные КТ812, КТ704, КТ838, КТ839, КТ840, то есть с граничным напряжением коллектор-эмиттер не менее 300В, из импортных знаю только J13007 и J13009, они применяются в компьютерных БП. Диоды можно заменить любыми другими мощными импульсными или с барьером шоттки, я, например, использовал импортные FR302.

Трансформатор Т1 намотан на двух сложенных кольцах К32×19Х7 из феррита марки М2000НМ, первичная обмотка намотана равномерно по всему кольцу и составляет 82 витка провода ПЭВ-1 0,56. Перед намоткой необходимо скруглить острые кромки колец алмазным надфилем или мелкой наждачной бумагой и обмотать слоем фторопластовой ленты, толщиной 0,2 мм, так же нужно обмотать и первичную обмотку. Обмотка III намотана сложенным вдвое проводом ПЭВ-1 0,56 и составляет 16+16 витков с отводом от середины. Обмотка II намотана двумя витками провода МГТФ 0,05, и расположена на свободном от обмотки III месте.

Трансформатор Т2 намотан на кольце К10×6Х5 из феррита той же марки. Все обмотки намотаны проводом МГТФ 0,05. Обмотка I состоит из десяти витков, а обмотки II и III намотаны одновременно в два провода и составляют шесть витков.

Наладка ИБП


ВНИМАНИЕ!!! ПЕРВИЧНЫЕ ЦЕПИ БП НАХОДЯТСЯ ПОД СЕТЕВЫМ НАПРЯЖЕНИЕМ, ПОЭТОМУ НУЖНО СОБЛЮДАТЬ МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ НАЛАДКЕ И ЭКСПЛУАТАЦИИ.

Первый запуск блока желательно производить подключив его через токоограничивающий резистор, представляющий из себя лампу накаливания мощностью 200 Вт и напряжением 220 В. Как правило, правильно собранный БП в наладке не нуждается, исключение составляет лишь транзистор VT3. Проверить релаксатор можно подключив эмиттер транзистора к минусовому полюсу. После включения блока, на коллекторе транзистора должны наблюдаться пилообразные импульсы частотой около 5 Гц.

Существует множество схем ИИП, особенно на просторах интернета, а вот рабочих мало, единицы. Сколько было собрано, сколько сожжено дорогостоящих полевых транзисторов и микросхем! Некоторые блоки удавалось заставить работать, некоторые нет. Приведенная ниже схема начинает работать сразу, некритична к выбору деталей, практически не дает помех, доступна для сборки даже начинающим радиолюбителям.

На первый взгляд схема кажется сложной, но при поблочном рассмотрении все становится ясно и просто. Все детали недороги, легкодоступны, имеют множество замен, большинство деталей имеется в компьютерных блоках питания. Было собрано четыре блока, разной конфигурации, на разных печатных платах, все заработали сразу и работают до сих пор. Последний блок предназначен для известного усилителя « ». За основу взята схема , дополнена устройством плавного запуска, переведена на современную элементную базу. Некоторые элементы были перерасчитаны для получения большей мощности и снижения пульсаций выпрямленного напряжения.

Технические характеристики:
Номинальная мощность: 500Вт
Частота преобразования: 100 кГц
Выходное напряжение: +/ - 65В
КПД 0,75

Мощность блока при использовании этих же деталей легко может достигать 800Вт, требуется только перерасчет трансформатора ТР2.

Краткое описание работы

Задающий генератор собран на элементах DD1, подстроечным резистором частота меняется в пределах 100-200 кГц. Триггер на элементе DD2 снижает частоту вдвое и формирует импульсы с более крутыми фронтами. Через комплементарный эмиттерный повторитель на транзисторах VT3 – VT4 импульсы проходят на трансформатор ТР1 и управляют мощными транзисторами VT5,VT6. Задающий генератор питается от отдельного стабилизатора собранного на элементах С5,С6,С7,С8 диодах D7-D10 и транзисторе VT2. Устройство плавного запуска выполнено на тиристоре VD1. При включении блока в сеть, конденсатор фильтра C10 заряжается через резистор R5. Конденсатор С4 заряжается через резисторы R3 R4. При достижении на этом конденсаторе напряжения примерно 1В, тиристор открывается и шунтирует R5.
Сетевой фильтр и выпрямитель особенностей не имеют. За выпрямителем следует транзисторный фильтр на транзисторе VT1, который уменьшает пульсации выпрямленного напряжения в 125 раз, для того, что бы исключить модуляцию прямоугольного сигнала напряжением частотой 100Гц.

Напряжение, полученное с трансформатора ТР2 (обмотки 2 и 3) выпрямляется диодным мостом D13-D16 и через дроссель L2 поступает на выходной фильтр C16,C17,L3,L4,C18,C19,C20,C21. Дроссель L2 необходим главным образом для ограничения зарядного тока через диоды моста, т.к. в выходном фильтре применены конденсаторы большой емкости. Более подробно с работой схемы можно ознакомиться в .

Принципиальная схема:

Конструкция и детали

Конструктивно блок выполнен на трех печатных платах: на одной - силовая часть блока с устройством плавного запуска и транзисторным фильтром, на другой - задающий генератор с собственным блоком питания, на третьей трансформатор ТР2 и выходной фильтр. Выходной фильтр может быть собран непосредственно на плате усилителя, тогда ТР2 крепится к шасси. Компановка может быть различной. Рисунки печатных плат 1 и 2 прилагаются. Ввиду чрезвычайной простоты плата выходного фильтра не разрабатывалась. При использовании разных деталей (диоды, конденсаторы) рисунок платы будет индивидуальным в каждом конкретном случае. Конденсаторы С14, С15 и резисторы R4,R5,R7,R11,R12 установлены на плате стоя. Конденсаторы С14, С15 и резисторы R11,R12 в верхней точке соединяются и образуют точку подключения нижнего по схеме вывода обмотки 1 трансформатора ТР2. Тиристор VD1 и транзистор VT1 установлены на одном радиаторе через изолирующие прокладки. При использовании тиристора в другом корпусе можно установить его на отдельный радиатор.
При сборке нужно стараться все соединения делать возможно короче.

О деталях

Микросхемы серии 511 заменять другими не следует. Можно использовать импортный аналог: для К511ЛА1 аналогом является Н102, для К511ТВ1 аналог Н110.

Транзисторы. На месте транзисторов VT3, VT4 можно использовать практически любые высокочастотные транзисторы: ВС639 и ВС640, ВС635 и ВС636, ВС337 и ВС638, КТ 315 и КТ361, КТ502 и КТ503 и др. желательно только подобрать их с наибольшим коэффициентом усиления.

Транзисторы VT5,VT6 лучше выбрать в большом корпусе. При использовании транзисторов в корпусе ТО-220 необходимо скорректировать печатную плату. Можно их сделать и выносными. Для замены подойдут транзисторы серии 2SC – 3996 – 3998, 5144, 2204, 3552, 3042, 3306, 5570, 2625 и др. с напряжением не менее 400В и током коллектора не менее 10А. Их желательно подобрать с близким коэффициентом усиления. При установке этих транзисторов на общий радиатор надо использовать слюдяные прокладки смазанные пастой КТП-8. Площадь радиатора для каждого транзистора должна быть не менее 65см2. Транзистор VT1 можно заменить на КТ898А или А1. Это транзисторы дарлингтона, стоят в коммутаторах транзисторных систем зажигания. Можно поставить транзисторы серии 2SC указанные выше, но придется установить их на отдельный радиатор площадью не менее 150см2. Кроме того придется пересчитать вторичную обмотку трансформатора ТР2, т.к. на транзисторе будет потеря напряжения порядка 20В. Лучше самостоятельно сделать составной транзистор, добавив еще один, например MJE13005,13007,13009 и т.п. Участок схемы приводится. Вместо транзистора КТ815Г можно поставить КТ817Г или BD135, BD137, BD139.

Фрагмент:

Диоды. Диодный мост BR1010 можно заменить на другой, не менее 10А - 400В или отдельные диоды с такими же характеристиками. Мост снабжен небольшим радиатором.
Диоды D11,D12 – любые быстрые на напряжение не менее 400В. Подойдут FR104 – 107, FR154 - FR157, SF16, из отечественных можно поставить КД104А. D5 – FR157, SF16. Диоды 1N4007 можно заменить на КД105Г или другие на ток более 0,5А и напряжением 400В и больше. Диоды КД2997А,Б можно заменить на КД2999А,Б или импортные быстрые диоды с напряжением не менее 200В и током 15 - 20А. В крайнем случае, можно поставить КД213, но по две штуки в плечо параллельно. Из импортных подойдут 15ETH06, 30ETH06, 30EPH06, BYW29-500 и др. Диоды Шоттки можно использовать, если выходное напряжение не превышает 60В. Смотрите даташиты.

Стабилитрон D17 любой на 15В, например КС515 или импортный. Можно составить из двух, например КС175А, Д814А.

Тиристор ВТ151 можно заменить другим с максимальным током не менее 10А и напряжением 400В, например КУ202Н1.

Конденсаторы С2,С3С5,С9,С13-С19 пленочные, С1,С12 – керамика. Конденсаторы С14, С15 можно поставить и меньшей емкости, но не менее 1мкФ. Они должны быть одинаковы и обязательно пленочными, на напряжение не менее 250В. Емкость С2,С3,С9 не критична и ее можно менять. Лучше в большую сторону. Конденсатор С10 составлен из двух емкостью 220 и 330 мкФ 400В. Если блок будет иметь другую мощность, эти конденсаторы следует ставить из расчета 1мкФ на 1Вт мощности. Хотя и используется транзисторный фильтр, емкость этих конденсаторов не следует сильно уменьшать, что бы сохранить жесткость нагрузочной характеристики блока. Конденсатор С8 может быть емкостью 100 – 200мкФ. Конденсаторы С16, С17 могут быть составлены из нескольких меньшей емкости, что даже лучше. Чем больше общая емкость – тем лучше, в разумных пределах. Для облегчения работы по высокой частоте конденсаторов С20, С21 желательно припаять непосредственно к их выводам с обратной стороны платы керамические конденсаторы емкостью 0,033 – 0,1мкФ.

Резисторы - указанной на схеме мощности. R1 – желательно многооборотный. R6 служит для разрядки конденсаторов, номинал 390 – 910кОм. Резисторы R11, R12 должны быть одинаковыми и могут быть номиналом от 47 до 200 кОм. Суммарное сопротивление резисторов R3 и R4 должно быть 43 – 46 кОм.

Дроссели и трансформаторы. Дроссель L1 намотан на кольце из феррита марки М2000 наружным диаметром от 20мм. Намотка ведется в один слой сразу двумя проводами диаметром 0.8-1,2 мм до заполнения. Можно использовать и Ш-образный сердечник, например от блока питания телевизора. Не критично. Дроссель L2 намотан проводом диаметром 1,2мм на чашечном сердечнике из феррита марки М2000 диаметром 35 и более мм. Намотка ведется в два провода до заполнения каркаса. Так как дроссель работает на постоянном токе, в зазор необходимо поместить диэлектрическую прокладку толщиной примерно 0,3мм. Можно попробовать намотать на кольцевой сердечник от дросселя групповой стабилизации компьютерного блока питания. Дроссели L3 L4 готовые из компьютерного блока питания, те, что намотаны толстым проводом. Должны быть одинаковыми. Их можно изготовить самостоятельно, намотав 10-20 витков провода диаметром 1.2мм на кусочки круглого феррита от антенны радиоприемника длиной 25мм.

Трансформатор ТР1 изготовлен на кольце из феррита марки М2000 типоразмера 16*8*6 и содержит 90витков провода ПЭЛШО 0,12 намотанных сразу тремя проводами. Типоразмер, марка провода и число витков не критичны. Для облегчения работы этот трансформатор можно намотать на чашечном магнитопроводе диаметром примерно 20мм так же в три провода. Если нет ничего подходящего, можно намотать и на небольшом Ш-образном ферритовом магнитопроводе.

Самая ответственная часть работы – намотка трансформатора ТР2. Он намотан на сердечнике, состоящего из двух колец типоразмера 40*25*11. Кольца нужно склеить между собой, грани закруглить крупной наждачной бумагой. Затем магнитопровод обматывается двумя слоями лакоткани или фторопластовой ленты. Первичная обмотка намотана в два провода (в параллель) диаметром 0,8мм и содержит 26 витков, равномерно распределенных по кольцу. Поверх первичной обмотки снова два слоя лакоткани. Вторичная обмотка(2,3) мотается в три провода диаметром 0,8мм и содержит 2*13 витков. Порядок работы таков: берем провод необходимой длины, складываем его в 6 слоев, слегка скручиваем для удобства, и мотаем 13 витков равномерно поверх первичной обмотки. Затем прозвонкой разделяем его на две части и соединяем начало одной части с концом другой. Так мы получим две обмотки в три провода и точку соединения. Снова обматываем все лакотканью. Готовый трансформатор можно пропитать парафином, нитролаком или эпоксидной смолой. Но в последнем случае он получится неразборным. Для более точного подбора напряжения необходимо сразу после намотки первичной обмотки намотать 10 витков любого провода, подключить к диодному мосту и замерить напряжение. Затем вычислить необходимое количество витков. Получается примерно 5В на один виток.

При намотке всех дросселей и трансформаторов крайне важно соблюдать начала и концы обмоток. Начала обмоток на схеме помечены точками.

Если нужны другие выходные напряжения, нужно пересчитать количество витков вторичной обмотки. Обмоток может быть и несколько. Если нужно рассчитать трансформатор ТР2 на другую мощность или на другой магнитопровод, необходимо воспользоваться .

Из многих программ выбрана именно эта, как простая и дающая реальные достоверные результаты.

Налаживание начинаем с генератора импульсов. Для этого к сети подключаем только маленькую печатную плату, отдельно от большой. Осциллографом наблюдаем на обмотках 2 и 3 трансформатора ТР1 противофазные прямоугольные импульсы. Затем резистором R1 устанавливаем частоту этих импульсов равной 100 кГц. У многих нет осциллографа, что делать? Берем плату с припаянным сетевым проводом и идем в ближайшее телеателье. Наверняка не откажут в одном измерении. После этого можно подключать и силовую часть блока питания. Сделать это лучше включив в разрыв сетевого провода лампу накаливания мощностью 75-100 Вт. Лампа должна кратковременно загореться и погаснуть. Если горит постоянно, проверяйте правильность сборки. Если все в норме – лампу убираем. Блок без нагрузки включать нельзя, поэтому на время проверки нагрузим его двухватными резисторами 500-600 Ом. Измеряем выходные напряжения. Если напряжения отличаются от расчетных, измерьте напряжение сети – возможно, оно сильно отличается от 220В. Проверяем работу устройства плавного запуска. Для этого подключаем авометр параллельно резистору R5. При включении блока прибор должен показать постоянное напряжение порядка 30В. Через одну-две секунды напряжение должно почти полностью исчезнуть. Параллельно конденсатору С2 можно включить варистор, например JVR-7N391K, или другой, на напряжение около 400В. Отверстия в печатной плате имеются. Блок защищен предохранителем 8А.

Литература:
«РАДИО» №1 1987г. стр.35-37

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 Микросхема К511ЛА1 1 В блокнот
DD2 Микросхема К511ТВ1 1 В блокнот
D1-D4 Диодный мост

BR1010

4 В блокнот
VT1 Биполярный транзистор

BU931P

1 В блокнот
VT2 Биполярный транзистор

КТ815Г

1 В блокнот
VT3 Биполярный транзистор

2N5551

1 В блокнот
VT4 Биполярный транзистор

2N5401

1 В блокнот
VT5, VT6 Биполярный транзистор

MJE13009

2 В блокнот
D5, D11, D12 Выпрямительный диод

HER108

3 В блокнот
D7-D10 Выпрямительный диод

1N4007

4 В блокнот
D13-D16 Диод

КД2997А

4 В блокнот
D17 Стабилитрон

КС515А

1 В блокнот
VD1 Тиристор BT151-800 1 В блокнот
C1 Конденсатор 1500 пФ 1 В блокнот
C2, C3 0.22мкФ 400В 2 В блокнот
C4 Электролитический конденсатор 2200мкФ 10В 1 В блокнот
C5, C9 Электролитический конденсатор 1мкФ 400В 2 В блокнот
C6 Электролитический конденсатор 470мкФ 100В 1 В блокнот
C7 Электролитический конденсатор 10мкФ 10В 1 В блокнот
C8 Электролитический конденсатор 150мкФ 400В 1 В блокнот
C10 Электролитический конденсатор 550мкФ 400В 1 В блокнот
C11 Электролитический конденсатор 100мкФ 25В 1 В блокнот
C12 Конденсатор 0.033 мкФ 1 В блокнот
C13 Конденсатор 0.1 мкФ 1 В блокнот
C14, C15 Электролитический конденсатор 4.7мкФ 250В 2 В блокнот
C16, C17 Электролитический конденсатор 4.7мкФ 160В 2 В блокнот
C18, C19 Конденсатор 0.22 мкФ 2 В блокнот
C20, C21 Электролитический конденсатор 10000мкФ 83В 2 В блокнот
R1 Переменный резистор 22 кОм 1 В блокнот
R2 Резистор

От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует. Описаний методик расчетов типовых трансформаторов более чем достаточно. Поэтому здесь предлагается описание импульсного источника питания, который может использоваться не только с усилителями на базе TDA7293 (TDA7294), но и с любым другим усилителем мощности 3Ч.

Основой данного блока питания (БП) служит полумостовой драйвер с внутренним генератором IR2153 (IR2155), предназначенный для управления транзисторами технологий MOSFET и IGBT в импульсных источниках питания. Функциональная схема микросхем приведена на рисунке 1, зависимость выходной частоты от номиналов RC-задающей цепочки на рисунке 2. Микросхема обеспечивает паузу между импульсами «верхнего» и «нижнего» ключей в течении 10% от длительности импульса, что позволяет не опасаться «сквозных» токов в силовой части преобразователя.

Рис. 1

Рис. 2

Практическая реализация БП приведена на рисунке 3. Используя данную схему можно изготовить БП мощностью от 100 до 500Вт, необходимо лишь пропорционально увеличивать емкость конденсатора фильтра первичного питания С2 и использовать соответствующий силовой трансформатор TV2.

Рис. 1

Емкость конденсатора С2 выбирается из расчета 1... 1,5 мкФ на 1 Вт выходной мощности, например при изготовлении БП на 150 Вт следует использовать конденсатор на 150...220 мкФ. Диодный мост первичного питания VD можно использовать в соответствии с установленным конденсатором фильтра первичного питания, при емкостях до 330 мкФ можно использовать диодные мосты на 4...6 А, например RS407 или RS607. При емкости конденсаторов 470... 680 мкФ нужны уже более мощные диодные мосты, например RS807, RS1007.
Об изготовлении трансформатора можно разговаривать долго, однако вникать в глубокую теорию расчетов слишком долго и далеко не каждому нужно. Поэтому расчеты по книге Эраносяна для самых ходовых типоразмеров ферритовых колец М2000НМ1 просто сведены в таблицу 1.
Как видно из таблицы габаритная мощность трансформатора зависит не только от габаритов сердечника, но и от частоты преобразования. Изготавливать трансформатор для частот ниже 40 кГц не очень логично - гармониками можно создать не преодолимые помехи в звуковом диапазоне. Изготовление трансформаторов на частоты выше 100 кГц уже непозволительно по причине саморазогрева феррита М2000НМ1 вихревыми токами. В таблице приведены данные по первичным обмоткам, из которых легко вычисляются отношения витков/вольт и дальше уже вычислить, сколько витков необходимо для того или иного выходного напряжения труда не составит. Следует обратить внимание на то, что подводимое к первичной обмотке напряжение составляет 155 В - сетевое напряжение 220 В после выпрямителя и слаживающего фильтра будет составлять 310 В постоянного напряжения, схема полу мостовая, следовательно к первичной обмотке будет прилагаться половина этого значения. Так же следует помнить, что форма выходного напряжения будет прямоугольной, поэтому после выпрямителя и слаживающего фильтра величина напряжения от расчетной отличаться будет не значительно.
Диаметры необходимых проводов рассчитываются из отношения 5 А на 1 кв мм сечения провода. Причем лучше использовать несколько проводов меньшего диаметра, чем один, более толстый провод. Это требование относится ко всем преобразователям напряжения, с частотой преобразования выше 10 кГц, так как начинает уже сказываться скинэффект - потери внутри проводника, поскольку на высоких частотах ток течет уже не по всему сечению, а по поверхности проводника и чем выше частота, тем сильнее сказываются потери в толстых проводниках. Поэтому не рекомендуется использовать в преобразователях с частотой преобразования выше 30 кГц проводники толще 1 мм. Следует так же обратить внимание на фазировку обмоток - неправильно сфазированные обмотки могут либо вывести силовые ключи из строя, либо снизить КПД преобразователя. Но вернемся к БП, приведенному на рисунке 3. Минимальная мощность данного БП практически ни чем не ограничена, поэтому можно изготовить БП и на 50 Вт и меньше. Верхний же предел мощности ограничен некоторыми особенностями элементной базы.
Для получения больших мощностей требуются транзисторы MOSFET более мощные, а чем мощнее транзистор, тем больше емкость его затвора. Если емкость затвора силового транзистора довольно высокая, то для её заряда-разряда требуется значительный ток. Ток транзисторов управления IR2153 довольно не велик (200 мА), следовательно, эта микросхема не может управлять слишком мощными силовыми транзисторами на больших частотах преобразования.
Исходя из вышесказанного становится ясно, что максимальная выходная мощность преобразователя на базе IR2153 не может быть более 500...600 Вт при частоте преобразования 50...70 кГц, поскольку использование более мощных силовых транзисторов на этих частотах довольно серьезно снижает надежность устройства. Список рекомендуемых транзисторов для силовых ключей VT1, VT2 с краткими характеристиками сведен в таблицу 2.
Выпрямительные диоды вторичных цепей питания должны иметь наименьшее время восстановления и как минимум двукратный запас по напряжению и трехкратный току. Последние требования обоснованы тем, что выбросы напряжения самоиндукции силового трансформатора составляют 20...50 % от амплитуды выходного напряжения. Например при вторичном питании в 100 В амплитуда импульсов самоиндукции может составлять 120... 150 В и не смотря на то, что длительность импульсов крайне мала ее достаточно чтобы вызвать пробой в диодах, при использовании диодов с обратным напряжением в 150 В. Трехкратный запас по току необходим для того, чтобы в момент включения диоды не вышли из строя, поскольку емкость конденсаторов фильтров вторичного питания довольно высокая, и для их заряда потребуется не малый ток. Наиболее приемлемые диоды VD4-VD11 сведены в таблицу 3.

Емкость фильтров вторичного питания (С11, С12) не следует увеличивать слишком сильно, поскольку преобразование производится на довольно больших частотах. Для уменьшения пульсаций гораздо актуальней использование большой емкости в первичных цепях питания и правильный расчет мощности силового трансформатора. Во вторичных же цепях конденсаторов на 1000 мкФ в плечо вполне достаточно для усилителей до 100 Вт (конденсаторы по питанию, установленные на самих платах УМЗЧ должны быть не менее 470 мкФ) и 4700 мкФ для усилителя на 500 Вт. На принципиальной схеме изображен вариант выпрямителей вторичного силового питания, выполненный на диодах Шотки, под них и разведена печатная плата (рисунок 4). На диодах VD12, VD13 выполнен выпрямитель для вентилятора принудительного охлаждения теплоотводов, на диодах VD14-VD17 выполнен выпрямитель для низковольтного питания (предварительные усилители, активные регуляторы тембра и т.д.). На том же рисунке приведен чертеж расположения деталей и схема подключения. В преобразователе имеется защита от перегрузки, выполненная на трансформаторе тока TV1, состоящая из кольца К20х12х6 феррита М2000 и содержащего 3 витка первичной обмотки (сечение такое же как и первичная обмотка силового трансформатора и 3 витка вторичной обмотки, намотанной двойным проводом диаметром 0,2...0,3 мм. При перегрузке напряжение на вторичной обмотке трансформатора TV1 станет достаточным для открытия тиристора VS1 и он откроется, замкнув питание микросхемы IR2153, тем самым прекратив ее работу. Порог срабатывания защиты регулируется резистором R8. Регулировку производят без нагрузки начиная с максимальной чувствительности и добиваясь устойчивого запуска преобразователя. Принцип регулировки основан на том, что в момент запуска преобразователя он нагружен максимально, поскольку требуется зарядить емкости фильтров вторичного питания и нагрузка на силовую часть преобразователя максимальная.

Об остальных деталях: конденсатор С5 - пленочный на 0,33... 1 мкФ 400В; конденсаторы С9, С10 - пленочные на 0,47...2,2 мкФ минимум на 250В; индуктивности L1...L3 выполнены на ферритовых кольцах К20х12х6 М2000 и наматываются проводом 0,8... 1,0 мм до заполнения виток к витку в один слой; С14, С15 - пленочные на 0,33...2,2 мкФ на напряжение не менее 100 В при выходном напряжении до 80 В; конденсаторы С1, С4, С6, С8 можно керамические, типа К10-73 или К10-17; С7 можно и керамический, но лучше пленочный, типа К73-17.

Импульсный блок питания, обеспечивающий двухполярное напряжение +/-50В мощностью до 300 Вт, предназначен для применения , либо лабораторных БП повышенной мощности (). Эта относительно простая схема импульсного БП собрана в основном из радиоэлементов взятых из старых блоков питания AT/ATX.

Принципиальная схема преобразователя 220/2х50В


Схема самодельного импульсного БП для УМЗЧ

Трансформатор инвертора был намотан на ферритовом сердечнике ETD39. Моточные данные практически не отличаются, только выходные обмотки немного домотаны под увеличение вольтажа. Транзисторы ключевые — мощные IRFP450. Драйвер — популярная микросхема TL494. Питание осуществляется через специальный стабилизатор. В нём резистор пусковой с выпрямленным напряжением сети заряжает конденсатор питания, на котором, когда напряжение достигнет порога, включится стабилизатор, запустив драйвер. Он будет питаться только в моменты накопления энергии на конденсаторе, а после запуска преобразователя, питание драйвера возьмет на себя дополнительная обмотка трансформатора. Принцип работы такого варианта запуска известен давно и используется в популярной м/с UC384x.


Печатная плата

Силовой каскад

Еще одна особенность схемопостроения БП — управление полевыми транзисторами. Тут нижний по схеме IRFP450 управляется прямо с выхода драйвера, а верхний с помощью небольшого трансформатора.

Кроме того, система была оснащена защитой по току, отслеживая ток нижнего полевика, используя его сопротивление Rdson .

Результаты испытания БП


Готовый блок питания — плата с деталями

На практике, удалось получить около 100-150 выходной мощности на 4 омных АС. Напряжение +/-50В выставляется резистором P1 10к. Конечно оно может принимать любые значения, в зависимости от применяемой схемы УНЧ. В настоящее время система работает в составе .

Данная статья посвящена серии импульсных источников питания 2161 Second Edition (SE) на основе контроллера IR2161.

  • Защита от короткого замыкания и перегрузки;
  • Автосброс защиты от короткого замыкания;
  • Частотная модуляция "dither" (для снижения ЭМИ);
  • Микротоковый запуск (для первоначального запуска контроллера достаточно тока не более 300мкА);
  • Возможность диммирования (но нам это не интересно);
  • Компенсация выходного напряжения (своеобразная стабилизация напряжения);
  • Софт-старт;
  • Адаптивное мертвое время ADT;
  • Компактный корпус;
  • Производится по бессвинцовой технологии (Leed-Free).

Приведу некоторые важные для нас технические характеристики :

Максимальный втекающий/вытекающий ток: +/-500мА
Достаточно больший ток позволяет управлять мощными ключами и строить на основе данного контроллера довольно мощные импульсные блоки питания без использования дополнительных драйверов;

Максимальный потребляемый контроллером ток: 10мА
Ориентируясь на это значения проектируются цепи питания микросхемы;

Минимальное рабочее напряжение питания контроллера: 10,5В
При меньшем значении напряжения питания контроллер переходит в UVLO режим и осцилляция прекращается;

Минимальное напряжение стабилизации встроенного в контроллер стабилитрона: 14,5В
Внешний стабилитрон должен иметь напряжение стабилизации не выше этого значения чтобы избежать повреждения микросхемы из-за шунтирования избыточного тока на вывод COM;

Напряжение на выводе CS для срабатывания защиты от перегрузки: 0,5В
Минимальное напряжение на выводе CS при котором происходит срабатывание защиты от перегрузки;

Напряжение на выводе CS для срабатывания защиты от короткого замыкания: 1В
Минимальное напряжение на выводе CS при котором происходит срабатывание защиты от короткого замыкания;

Рабочий диапазон частот: 34 - 70кГц
Рабочая частота напрямую не задается и зависит только от потребляемой нагрузкой мощности;

Мертвое время по умолчанию: 1мкС
Используется в случае невозможности работать в режиме адаптивного мертвого времени (ADT), а так же при отсутствии нагрузки;

Частота работы в режиме софт-старта: 130кГц
Частота на которой работает контроллер в режиме софт-старта;

Основное внимание сейчас следует уделить на то, какие существуют режимы работы микросхемы и в какой последовательности они расположены друг относительно друга. Основное внимание я уделю описанию принципа работы каждого из блоков схемы, а последовательность их работы и условиях перехода из одного режима в другой опишу более кратко. Начну с описания каждого из блоков схемы:

Under-voltage Lock-Out Mode (UVLO), режим блокировки при пониженном напряжении - режим в котором контроллер находится когда напряжение его питания ниже минимального порогового значения (примерно 10,5В).

Soft Start Mode, режим мягкого старта - режим работы, при котором осциллятор контроллера, короткое время работает на повышенной частоте. Когда осциллятор включается, частота его работы изначально очень высока (около 130 кГц). Это приводит к тому, что выходное напряжение преобразователя будет ниже, поскольку трансформатор блока питания имеет фиксированную индуктивность, которая будет иметь более высокий импеданс на более высокой частоте и, таким образом, уменьшается напряжение на первичной обмотке. Уменьшенное напряжение, естественно, приведет к уменьшенному току в нагрузке. По мере заряда конденсатора CSD от 0 до 5В, частота осцилляции будет плавно снижается со 130 кГц до рабочей частоты. От величины емкости конденсатора CSD будет зависеть длительность развертки софт-старта. Однако, так как конденсатор CSD также задает время задержки отключения и участвует в работе узла компенсации напряжения, его емкость должна быть строго 100нФ.

Проблема софт-старта. Хочется быть полностью честным и упомянуть тот факт, что при наличии на выходе блока питания фильтрующих конденсаторов большой емкости, софт-старт чаще всего не срабатывает и ИИП запускается сразу на рабочей частоте минуя режим софт-старта. Происходит этого по причине того, что в момент старта, разряженные конденсаторы во вторичной цепи имеют очень низкое собственное сопротивление и для их зарядки требуется очень высокий ток. Этот ток вызывает кратковременное срабатывание защиты от короткого замыкания, после чего контроллер сразу же перезапускается и переходит в режим RUN, минуя режим софт-старта. Бороться с этим можно увеличением индуктивности дросселей во вторичной цепи, стоящих сразу после выпрямителя. Дроссели с большой индуктивностью растягивают процесс заряда выходных фильтрующих конденсаторов, другими словами, конденсаторы заряжаются меньшим по величине током, но дольше по времени. Меньший зарядный ток не вызывает срабатывания защиты при старте и позволяет софт-старту нормально выполнять свои функции. На всякий случай, по поводу этого вопроса я обратился в техническую поддержку производителя, на что получил ответ:

"Типичный галогеновый преобразователь имеет выход переменного тока без выпрямительных или выходных конденсаторов. Мягкий пуск работает, уменьшая частоту. Для обеспечения плавного пуска необходимо, чтобы трансформатор имел значительную утечку. Однако это должно быть возможно в вашем случае. Попробуйте поместить индуктор на вторичной стороне от мостовых диодов к конденсатору.

С наилучшими пожеланиями.
Infineon Technologies
Steve Rhyme, Support Engineer"

Мои предположения по поводу причины неуверенной работы софт-старт оказались верны и более того, даже способ борьбы с этой проблемой мне предложили такой же. И снова, чтобы быть до конца честным, следует добавить что применение катушек с повышенной индуктивностью, относительно обычно применяемых на выходе ИИП, ситуацию улучшает, но полностью проблему не устраняет. Тем не менее, с этой проблемой можно мириться учитывая что по входу ИИП присутствует термистор, ограничивающий пусковой ток.

Run Mode, рабочий режим. Когда мягкий пуск завершен, система переходит в рабочий режим с компенсацией напряжения. Эта функция обеспечивает некоторую стабилизацию выходного напряжения преобразователя. Компенсация напряжения происходит благодаря изменению рабочей частоты преобразователя (увеличение частоты - уменьшает выходное напряжение), хотя точность такого типа "стабилизации" не высока, она нелинейна и зависит от многих параметров и, следовательно, нелегко предсказуема. IR2161 контролирует ток нагрузки через резистор тока (RCS). Пиковый ток детектируется и усиливается в контроллере, а затем воздействует на вывод CSD. Напряжение на конденсаторе CSD, в рабочем режиме (режиме компенсации напряжения), будет варьироваться от 0 (при минимальной нагрузке) до 5В (при максимальной нагрузке). При этом частота генератора будет варьироваться от 34 кГц (Vcsd = 5В), до 70 кГц (Vcsd = 0В).

Существует так же возможность приладить к IR2161 обратную связь, которая позволит организовать почти полноценную стабилизацию выходного напряжения и позволит значительно более точно отслеживать и поддерживать на выходе необходимое напряжение:

Подробно рассматривать эту схему в рамках данной статьи мы не будем.

Shut Down Mode, режим отключения. IR2161 содержит двухпозиционную систему автоматического отключения которая определяет как короткое замыкание, так и состояние перегрузки преобразователя. Напряжения на выводе CS используется для определения этих условий. Если выход преобразователя будет закорочен, через ключи будет протекать очень большой ток и система должна отключиться в течение нескольких периодов времени в сети, иначе транзисторы будут быстро уничтожены из-за теплового пробоя перехода. Вывод CS имеет задержку отключения для предотвращения ложного срабатывания, либо из-за пускового тока при включении, либо при переходных токах. Более низкий порог (когда Vcs > 0,5 < 1 В), имеет намного большую задержку до отключения ИИП. Задержка для отключения по перегрузке приблизительно равна 0,5 сек. Оба режима отключения (по перегрузке и по короткому замыканию), имеют автоматический сброс, что позволяет контроллеру возобновить работу примерно через 1 сек после устранения перегрузки или короткого замыкания. Это значит, что если неисправность будет устранена, преобразователь может продолжить нормально работать. Осциллятор работает на минимальной рабочей частоте (34 кГц), когда конденсатор CSD переключается к цепи отключения. В режиме плавного пуска или рабочем режиме, если превышен порог перегрузки (Vcs > 0,5В), IR2161 быстро заряжает CSD до 5В. Когда напряжение на выводе CS больше чем 0,5В и когда порог короткого замыкания 1В превышен, CSD будет заряжаться от 5В до напряжения питания контроллера (10-15В) за 50 мсек. Когда пороговое напряжение перегрузки Vcs более 0,5В, но менее 1В, CSD заряжается от 5В до напряжения питания приблизительно за 0,5 сек. Следует помнить и учитывать тот факт, что на выводе CS появляются высокочастотные импульсы с 50% рабочим циклом и синусоидальной огибающей - это означает, что только на пике напряжения сети конденсатор CSD будет заряжаться поэтапно, в каждом полупериоде. Когда напряжение на конденсаторе CSD достигнет величины напряжения питания, CSD разряжается до 2,4В и преобразователь снова запускается. Если неисправность все еще присутствует, CSD снова начинает заряжаться. Если неисправность исчезнет, то CSD разрядится до 2,4В, а затем система автоматически вернется в рабочий режим компенсации напряжения.

STANDBY mode, режим ожидания - режим в котором контроллер находится в случае недостаточного по величине напряжения питания, при этом он потребляет не более 300мкА. Осциллятор при этом, естественно, выключен и ИИП не работает, на его выходе напряжение отсутствует.

Блоки Fault Timing Mode, Delay и Fault Mode , хотя и показаны на блок-схеме, но по сути режимами работы контроллера не являются, скорее их можно отнести к переходным стадиям (Delay и Fault Mode) или условиям перехода из одного режима в другой (Fault Timing Mode).

А теперь опишу как все это вместе работает :
При подаче питания, контроллер стартует в режиме UVLO. Как только величина напряжения питания контроллера превысит минимально необходимое для устойчивой работы значение напряжения, контроллер переходит в режим софт-старта, осциллятор запускает на частоте 130кГц. Плавно заряжается конденсатор CSD до 5В. По мере заряда внешнего конденсаторы, частота работы осциллятора снижается до рабочей частоты. Таким образом контроллер переходит в режим RUN. Как только контроллер перешел в режим RUN, конденсатор CSD мгновенно разряжается до потенциала земли и подключается внутренним ключом к схеме компенсации напряжения. Если запуск ИИП происходит не на холостом ходу, а под нагрузкой, на выводе CS будет присутствовать потенциал пропорциональный величине нагрузки, который через внутренние цепи контроллера будет воздействовать на узел компенсации напряжения и не даст конденсатору CSD, после завершения софт-старта, полностью разрядиться. Благодаря этому запуск произойдет не на максимальной частоте рабочего диапазона, а на частоте соответствующей величине нагрузки на выходе ИИП. После перехода в режим RUN контроллер работает по ситуации: либо остается работать в этом режиме до того момента пока вам не надоест и вы не выключите блок питания из розетки, либо... В случае перегрева, контроллер переходит в режим FAULT, осциллятор прекращает свою работы. После остывания микросхемы происходит перезапуск. В случае перегрузки или короткого замыкания, контроллер переходит в режим Fault Timing, при этом внешний конденсатор CSD мгновенно отключается от узла компенсации напряжения и подключается к узлу отключения (конденсатор CSD в этом случае задает время задержки отключения контроллера). Частота работы мгновенно уменьшается до минимальной. В случае перегрузки (когда напряжение на выводе CS > 0,5 < 1 В), контроллер переходит в режим SHUTDOWN и выключается, но происходит это не мгновенно, а только в том случае, если перегрузка продолжается дольше половины секунды. Если перегрузки носят импульсный характер с продолжительностью импульса не более 0,5 сек, то контроллер будет просто работать на минимально возможно частоте, постоянно переключаясь между режимами RUN, Fault Timing, Delay, RUN (при этом будут отчетливо слышны щелчки). Когда напряжение на выводе CS превышает 1В, срабатывает защита от короткого замыкания. При устранении перегрузки или короткого замыкания, контроллер переходит в режим STANDBY и при наличии благоприятных условий для перезапуска, минуя режим софт-старта, переходит в режим RUN.

Теперь, когда вы понимаете как работает IR2161 (я на это надеюсь), я вам расскажу о самих импульсных источниках питания на ее основе. Хочу сразу предупредить, что если вы решите собирать импульсный блок питания на основе данного контроллера, то следует собирать ИИП руководствуясь последней, наиболее совершенной схемой на соответствующей ей печатной плате. Поэтому список радиоэлементов внизу статьи будет приведен только для последней версии блока питания. Все промежуточные редакции ИИП показаны лишь для демонстрации процесса совершенствования устройства.

И первый ИИП о котором пойдет речь условно назван мной 2161 SE 2 .

Основное и ключевое отличие 2161 SE 2 , заключается в наличии цепи самопитания контроллера, что позволило избавиться от кипящих гасящих резисторов и соответственно повысить на несколько процентов КПД. Так же были сделаны другие не менее значительные улучшения: оптимизация разводки печатной платы, добавлено больше выходных клемм для подключения нагрузки, добавлен варистор.

Схема ИИП приведена на изображении ниже:

Цепь самозапитки построена на VD1, VD2, VD3 и С8. Благодаря тому, что цепь самопитания подключается не к низкочастотной сети 220В (с частотой 50Гц), а к первичной обмотки высокочастотного трансформатора, емкость гасящего конденсатора самопитания (С8) составляет всего 330пФ. В случае если бы самопитание было организовано от низкочастотной сети 50Гц, то емкость гасящего конденсатора пришлось бы увеличить в 1000 раз, само-собой что такой конденсатор занял бы намного больше места на печатной плате. Описываемый способ самозапитки не менее эффективен чем самозапитка от отдельной обмотки трансформатора, но при этом значительно проще. Стабилитрон VD1 необходимо для облегчения работы встроенного стабилитрона контроллера, который не способен рассеивать значительную мощность и без установки внешнего стабилитрона может попросту быть пробит, что приведет к полной потере работоспособности микросхемы. Напряжение стабилизации VD1 должно находится в диапазоне 12 - 14В и не должно превышать напряжение стабилизация встроенного стабилитрона контроллера, которое составляет примерно 14,5В. В качестве VD1 можно применить стабилитрон с напряжением стабилизации 13В (например 1N4743 или BZX55-C13), или использовать несколько стабилитронов соединенных последовательно, что я и сделал. Мною были включены последовательно два стабилитрона: один из них на 8,2В, другой на 5,1В, что в итоге дало результирующее напряжение 13,3В. При таком подходе к питанию IR2161, напряжение питания контроллера не проседает и практически не зависит от величины нагрузки подключенной к выходу ИИП. В данной схеме R1 необходим только для старта контроллера, так сказать, для начального пинка. R1 немного греется, но далеко не так сильно как это было в первой версии этого блока питания. Использование высокоомного резистора R1 дает еще одну интересную особенность: напряжение на выходе ИИП появляется не сразу после включения в сеть, а через 1-2 секунды, когда зарядится С3 до минимального напряжения закуска 2161 (примерно 10,5В).

Начиная с данного ИИП и во всех последующих, на входе ИИП используется варистор, он предназначен для защиты ИИП от превышения входного напряжения выше допустимого значения (в данном случае - 275В), а так же очень эффективно подавляет высоковольтные помехи не пуская их на вход ИИП из сети и не выпуская помехи из ИИП обратно в сеть.

В выпрямителе вторичного питания блока питания, мною были применены диоды SF54 (200В, 5А) по два параллельно. Диоды расположены в два этажа, выводы диодов должны быть максимально возможной длины - это необходимо для лучшего отвода тепла (выводы являются своеобразным радиатором для диода) и лучшей циркуляции воздуха вокруг диодов.

Трансформатор в моем случае выполнен на сердечнике от компьютерного блока питания - ER35/21/11. Первичная обмотка имеет 46 витков в три провода 0,5мм, две вторичные обмотки по 12 витков в три провода 0,5мм. Входной и выходные дроссели так же взяты из компьютерного БП.

Описываемый блок питания долговременно (без ограничения по времени работы), способен отдавать в нагрузку 250Вт, кратковременно (не более минуты) - 350Вт. При использовании данного ИИП в режиме динамической нагрузки (например для питания усилителя мощности звуковой частоты класса B или AB), от данного импульсного блока питания возможно запитать УМЗЧ с суммарной выходной мощностью 300Вт (2х150Вт в режиме стерео).

Осциллограмма на первичной обмотке трансформатора (без снаббера, R5 = 0,15 Ом, 190Вт на выходе):

Как видно из осциллограммы, при выходной мощности 190Вт, частота работы ИИП снижается до 38кГц, на холостом ходу, ИИП работает на частоте 78кГц:

Из осциллограмм, кроме того, хорошо видно что на графике отсутствуют какие-либо выбросы, а это несомненно положительно характеризует данный ИИП.

На выходе блока питания, в одном из плеч можно наблюдать такую картину:

Пульсации имеют частоту 100Гц и напряжение пульсаций примерно 0,7В, что сопоставимо с пульсациями на выходе классического, линейного, не стабилизированного блока питания. Для сравнения привожу осциллограмму, снятую при работе на той же выходной мощности для классического блока питания (емкость конденсаторов 15000мкФ в плече):

Как видно из осциллограмм, пульсации напряжения питания на выходе импульсного блока питания ниже, чем у классического блока питания той же мощности (0,7В у ИИП, против 1В у классического блока). Но в отличие от классического блока питания, на выходе ИИП заметен небольшой высокочастотный шум. Тем не менее, каких-либо значительных по величине высокочастотных помех или выбросов - нет. Частота пульсаций напряжения питания на выходе - 100Гц и обусловлена она пульсацией напряжения в первичной цепи ИИП по шине +310В. Для еще большего снижения пульсаций на выходе ИИП, необходимо увеличивать емкость конденсатора С9 в первичной цепи блока питания или емкости конденсаторов во вторичной цепи блока питания (эффективнее первое), а для снижения высокочастотных помех - применять на выходе ИИП дроссели с более высокой индуктивностью.

Печатная плата выглядит следующим образом:

Следующая схема ИИП о которой пойдет речь - 2161 SE 3:

В готовом виде блок питания собранный по данной схеме выглядит так:

В схеме принципиальных отличий от SE 2 - нет, различия, в основном, касаются печатной платы. В схеме добавились лишь снабберы во вторичных обмотках трансформатора - R7, C22 и R8, C23. Увеличены номиналы затворных резисторов с 22Ом до 51Ом. Уменьшен номинал конденсатора C4 с 220мкФ до 47мкФ. Резистор R1 собран из четырех резисторов по 0.5Вт, что позволило снизить нагрев этого резистора и немного удешевить конструкцию т.к. в моих краях четыре полуваттных резистора стоят дешевле одного двухваттного. Но возможность установить один двухваттный резистор осталась. Кроме этого увеличен номинал конденсатора самозапитки до 470пФ, смысла в этом особого не было, но в качестве эксперимента это было сделано, полет нормальный. В качестве выпрямительных диодов во вторичной цепи применены диоды MUR1560 в корпусе ТО-220. Оптимизирована и уменьшена печатная плата. Габариты печатной платы SE 2 - 153х88, тогда как печатная плата SE 3 имеет габариты - 134х88. Печатная плата выглядит следующим образом:

Трансформатор выполнен на сердечнике от компьютерного блока питания - ER35/21/11. Первичная обмотка имеет 45 витков в три провода 0,5мм, две вторичные обмотки по 12 витков в четыре провода 0,5мм. Входной и выходные дроссели так же взяты из компьютерного БП.

Первое же включение этого ИИП в сеть показало что снабберы во вторичной цепи блока питания являются явно лишними, они сразу же были выпаяны и далее не использовались. Позже был выпаян и снаббер первичной обмотки, как оказалось от него намного больше вреда чем пользы.

С данного блока питания долговременно удалось снимать мощность 300-350Вт, кратковременно (не более минуты) данный ИИП может отдавать до 500Вт, через минуту работы в таком режиме, общий радиатор нагревается до 60 градусов.

Посмотри осциллограммы:

По прежнему все красиво, прямоугольник почти идеально прямоугольный, выбросов нет. Со снабберами, как не странно, были все не так красиво.

Следующая схема - финальная и наиболее совершенная 2161 SE 4 :

В собранном виде устройство по данной схеме выглядит так:

Как и в прошлый раз, каких либо сильных изменений в схеме не произошло. Пожалуй самое заметное отличие - пропали снабберы, как в первичной цепи, так и во вторичных. Потому-что, как показали мои эксперименты, из-за особенностей работы контроллера IR2161, снабберы только мешают ему работать и попросту противопоказаны. Так же были сделаны другие изменения. Уменьшены номиналы затворных резисторов (R3 и R4), с 51 до 33 Ом. Последовательно с конденсатором самозапитки C7, добавлен резистор R2 для защиты от сверхтоков при зарядке конденсаторов C3 и С4. Резистор R1 по прежнему состоит из четырех полуваттных резисторов, а резистор R6 теперь спрятан под платой и представляет из себя три SMD резистора формата 2512. Тремя резисторами набирается необходимое сопротивление, но не обязательно использовать именно три резистора, в зависимости от требуемой мощности можно использовать один, два или три резистора - это допустимо. Термистор RT1 перенесен со схода ИИП в цель +310В. Остальные измерения касаются лишь разводки печатной платы и выглядит она следующим образом:

На печатной плате добавлен зазор безопасности между первичными и вторичными цепями, в наиболее узком месте сделан сквозной пропил в плате.

Трансформатор точно такой же как и в предыдущем блоке питания: выполнен на сердечнике от компьютерного блока питания - ER35/21/11. Первичная обмотка имеет 45 витков в три провода 0,5мм, две вторичные обмотки по 12 витков в четыре провода 0,5мм. Входной и выходные дроссели так же взяты из компьютерного БП.

Выходная мощность блока питания осталась прежней - 300-350Вт в долговременном режиме и 500Вт в кратковременно режиме (не более минуты). От данного ИИП можно запитывать УМЗЧ с суммарной выходной мощностью до 400Вт (2х200Вт в стерео режиме).

Теперь посмотрим осциллограммы на первичной обмотке трансформатора этого импульсного источника питания:

По прежнему все красиво: прямоугольник прямоугольный, выбросов нет.

На выходе одно из плеч блока питания, на холостом ходу, можно наблюдать следующую картину:

Как видно на выходе присутствуют ничтожно малый по величине высокочастотный шум с напряжением не более 8мВ (0,008В).

Под нагрузкой, на выходе, можно наблюдать уже хорошо знакомые нам пульсации с частотой 100Гц:

При выходной мощности 250Вт, напряжение пульсаций на выходе ИИП составляет 1,2В, что учитывая меньшую емкость конденсаторов во вторичной цепи (2000мкФ в плече, против 3200мкФ у SE2) и большую выходную мощностью при которой производились измерения, выглядит очень хорошо. Высокочастотная составляющая при данной выходной мощности (250Вт), так же незначительна, имеет более упорядоченный характер и не превышает 0,2В, что является хорошим результатом.

Установка порога срабатывания защиты. Порог при котором будет происходить срабатывание защиты задается резистором RCS (R5 - в SE 2, R6 - в SE 3 и SE 4).

Данный резистор может быть как выводным, так и SMD формата 2512. RCS может быть набран из нескольких параллельно соединенных резисторов.
Номинал RCS рассчитывается по формуле: Rcs = 32 / Pном. Где, Pном - выходная мощность ИИП, при превышении которой сработает защита от перегрузки.
Пример: допустим что нам необходимо чтобы защита от перегрузки срабатывала при превышении выходной мощности 275Вт. Рассчитываем номинал резистора: Rcs=32/275=0,116 Ом. Можно использовать либо один резистор на 0,1Ом, либо два резистора по 0,22Ом включенных параллельно (что в результате даст 0,11Ом), либо три резистора по 0,33Ом, так же включенных параллельно (что в результате даст 0,11Ом).

Теперь настало время затронуть самую интересующую народ тему - расчет трансформатора для импульсного блока питания . По вашим многочисленным просьбам я наконец подробно расскажу как это сделать.

В первую очередь нам потребуется сердечник с каркасом, либо просто сердечник, если это сердечник кольцевой формы (форма R).

Сердечники и каркасы могут быть совершенно разной конфигурации, можно применять любою. Я использовал сердечник с каркасом ER35 из компьютерного блока питания. Самое важно чтобы сердечник не имел зазора, сердечники с зазором применять нельзя.

По умолчанию, сразу после запуска программы, вы увидите подобные цифры.
Начиная расчет, первое что мы сделаем - выберем форму и размеры сердечника в верхнем правом углу окна программы. В моем случае форма ER, а размеры 35/21/11.

Размеры сердечника можно измерить самостоятельно, как это сделать, легко понять из следующей иллюстрации:

Далее выбираем материал сердечника. Хорошо если вы знаете из какого материала изготовлен именно ваш сердечник, если нет, то ничего страшного, просто выбирайте вариант по умолчанию - N87 Epcos. В наших условиях, выбор материала не окажет существенного влияния на конечный результат.

Следующим шагом выбираем схему преобразователя, она у нас - полумостовая:

В следующей части программы - "напряжение питания", выбираем "переменное" и во всех трех окошках указываем 230В.

В части "характеристики преобразователя", указываем необходимое нам двухполярное выходные напряжения (напряжение одного плеча) и требуемую выходную мощность ИИП, а так же диаметр провода, которым вы хотите намотать вторичные и первичную обмотки. Кроме этого, выбирается тип используемого выпрямителя - "двухполярн. со средней точкой". Там же ставим галочку "использовать желаемые диаметры" и под "стабилизация выходов" выбираем - "нет". Выбираем тип охлаждения: активное с вентилятором или пассивное без него. В итоге у вас должно получиться что-то подобное:

Реальные значения выходных напряжений, получатся больше чем вы укажите в программе при расчете. В данном случае, при указанном в программе напряжении 2х45В, на выходе реального ИИП получится примерно 2х52В, поэтому при расчете рекомендую указывать напряжение меньше необходимого на 3-5В. Либо указывать необходимое выходное напряжения, но наматывать на один виток меньше чем указано в результатах расчета программы. Выходная мощность не должна превышать 350Вт (для 2161 SE 4). Диаметр провода для намотки, можно использовать любой какой есть у вас в наличии, необходимо измерить и указать его диаметр. Не стоит наматывать обмотки проводом с диаметром более 0,8мм, лучше наматывать обмотки используя несколько (два, три и более) тонких проводов, чем один толстый провод.

После всего этого, нажимаем на кнопку "рассчитать" и получаем результат, в моем случае получилось следующее:

Основное внимание обращаем на выделенные красном пункты. Первичная обмотка в моем случае будет состоять из 41 витка, намотанных в два провода диаметром по 0,5мм каждый. Вторичная обмотка состоит из двух половин по 14 витков, намотанных в три провода диаметром 0,5мм каждый.

После получения всех необходимых расчетных данных переходим непосредственно к намотке трансформатора.
Тут, как мне кажется, ничего сложного нет. Расскажу как это делаю я. Сначала наматывается первичная обмотка целиком. Зачищается один из концов провода (проводов) и припаивается к соответствующему выводу каркаса трансформатора. После чего начинается намотка. Наматывается первый слой после чего накладывается тонкий слой изоляции. После чего наматывается второй слой и снова накладывается тонкий слой изоляции и таким образом наматывается все необходимое число витков первичной обмотки. Наматывать обмотки лучше всего виток к витку, но можно и косо-криво или просто "абы как", заметной роли это не сыграет. После того, как нужное число витков намотано, откусывается конец провода (проводов), конец провода зачищается и припаивается к другому соответствующему выводу трансформатора. После намотки первичной обмотки, на нее накладывается толстый слой изоляции. В качестве изоляции лучше всего использовать специальную лавсановую ленту:

Такой же лентой изолируют обмотки импульсных трансформаторов компьютерных блоков питания. Эта лента хорошо проводит тепло и имеет высокую термостойкость. Из подручных материалов можно посоветовать использовать: ФУМ ленту, малярный скотч, бумажный пластырь или рукав для запекания разрезанный на длинные полосы. Использоваться для изоляции обмоток ПВХ и матерчатую изоленту, канцелярский скотч, матерчатый пластырь - категорически нельзя.

После того как первичная обмотка намотана и изолированна, переходим к намотке вторичной обмотки. Некоторые наматывают одновременно сразу две половины обмотки, а потом разделяют их, но я же мотаю половинки вторичной обмотки по очереди. Вторичная обмотка мотается таким же образом как и первичная. Сначала зачищаем и припаиваем один конец провода (проводов) к соответствующему выводу каркаса трансформатора, наматываем нужное количество витков, накладывая изоляцию после каждого слоя. Намотав нужное количество витков одной половины вторичной обмотки, зачищаем и припаиваем конец провода к соответствующему выводу каркаса и накладываем тонкий слой изоляции. Начало провода следующей половины обмотки припаиваем к тому же выводу, что и конец предыдущей половины обмотки. Наматываем в том же направлении, такое же количество витков как у предыдущей половины обмотки, накладывая изоляцию после каждого слоя. Намотав нужное количество витков, припаиваем конец провода к соответствующему выводу каркаса и накладываем тонкий слой изоляции. Накладывать толстый слой изоляции после намотки вторичной обмотки не нужно. На этом намотку можно считать оконченной.

После завершения намотки, необходимо вставить сердечник в каркас и склеивать половинки сердечника. Для склейки я использую секундный супер-клей. Слой клея должен быть минимальным чтобы не создавать зазора между частями сердечника. В случае если у вас кольцевой сердечник (форма R), то естественно ничего клеить не придется, но процесс намотки будет менее удобным, отнимет больше сил и нервов. Кроме того кольцевой сердечник менее удобен из-за того, что придется самому создавать и формовать выводы трансформатора, а также продумывать крепление готового трансформатора к печатной плате.

По завершении намотки и сборки трансформатора должно получится что-то такое:

Для удобства повествования, добавлю и сюда схему ИИП 2161 SE 4, чтобы кратко рассказать об элементной базе и возможных заменах .

Пойдем по порядку - от входа к выходу. По входу сетевое напряжение встречается с предохранителем F1, предохранитель может иметь номинал от 3,15А до 5А. Варистор RV1 должен быть рассчитан на 275В, такой варистор будет иметь маркировку 07K431, но допускается так же использовать вариаторы 10K431 или 14K431. Использовать варистор с более высоким пороговым напряжением тоже можно, но эффективность защиты и подавления помех будет заметно ниже. Конденсаторы С1 и С2 могут быть как обычные пленочные (типа CL-21 или CBB-21), так и помехоподавляющего типа (например X2) на напряжение 275В. Сдвоенный дроссель L1 выпаиваем из компьютерного блока питания или другой неисправной техники. Дроссель можно изготовить самостоятельно намотав 20-30 витков на небольшом кольцевом сердечнике, проводом с диаметром 0,5 - 0,8мм. Диодный мост VDS1 может быть любой на ток от 6 до 8А, например указанный на схеме - KBU08 (8А) или RS607 (6А). В качестве VD4 подойдет любой медленный или быстрый диод с током от 0,1 до 1А и обратным напряжением не менее 400В. R1 может состоять как из четырех полуваттных резисторов по 82кОм, так и быть одним двухваттным резистором с тем же сопротивлением. Стабилитрон VD1 должен иметь напряжение стабилизации в диапазоне 13 - 14В, допускается использовать как один стабилитрон, так и последовательное соединение двух стабилитронов с меньшим напряжения. С3 и С5 могут быть как пленочными, так и керамическими. С4 должен иметь емкость не более 47мкФ, напряжение 16-25В. Диоды VD2, VD3, VD5 обязательно должны быть очень быстрыми, например - HER108 или SF18. С6 может быть как пленочным, так и керамическим. Конденсатор С7 должен быть рассчитан на напряжение не менее 1000В. С9 может быть как пленочным, так и керамическим. Номинал R6 должен быть рассчитан под требуемую выходную мощность, об том написано выше. В качестве R6 можно использовать как SMD резисторы формата 2512, так и выводные одно- или двух- ваттные резисторы, в любом случае резистор (резисторы) устанавливаются под платой. Конденсатор С8 должен пленочным (типа CL-21 или CBB-21) и иметь допустимое рабочее напряжение не менее 400В. С10 электролитический конденсатор на напряжение не менее 400В, от его емкости зависит величина низкочастотных пульсаций на выходе ИИП. RT1 - термистор, можно купить, а можно выпаять из компьютерного блока питания, сопротивление его должно быть от 10 до 20 Ом и допустимый ток не менее 3А. В качестве транзисторов VT1 и VT2 могут использоваться как указанные на схеме IRF740, так и другие транзисторы со схожими параметрами, например - IRF840, 2SK3568, STP10NK60, STP8NK80, 8N60, 10N60. Конденсаторы С11 и С13 должны быть пленочными (типа CL-21 или CBB-21) с допустимым напряжением не менее 400В, их емкость не должна превышать указанных на схеме 0,47мкФ. С12 и С14 - керамические, высоковольтные конденсаторы на напряжение не менее 1000В. Диодный мост VDS2 состоит из четырех диодов включенных мостом. В качестве диодов VDS2 необходимо использовать очень быстрые и мощные диоды, например такие как - MUR1520 (15А, 200В), MUR1560 (15А, 600В), MUR820 (8А, 200В), MUR860 (8А, 600В), BYW29 (8А, 200В), 8ETH06 (8А, 600В), 15ETH06 (15А, 600В). Дроссели L2 и L3 выпаиваются из компьютерного блока питания или изготавливаются самостоятельно. Они могут быть намотаны как на отдельных ферритовых стержнях, так и на общем кольцевом сердечнике. Каждый из дросселей должен содержать от 5 до 30 витков (больше - лучше), проводом с диаметром 1 - 1,5мм. Конденсаторы C15, C17, C18, C20 должны быть пленочными (типа CL-21 или CBB-21) с допустимым напряжением 63В и более, емкость может быть любой, чем больше будет их емкость - тем лучше, тем сильнее подавление высокочастотных помех. Каждый из конденсаторов обозначенных на схеме как C16 и C19, состоит из двух электролитических конденсаторов по 1000мкФ 50В. В вашем случае может потребоваться использовать более высоковольтные конденсаторы.

И в качестве завершающего аккорда, покажу фотографию, которая отображает эволюцию созданных мною импульсных блоков питания. Каждый следующий ИИП меньше, мощнее и качественнее предыдущего:

На этом все! Спасибо за внимание!

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Импульсный Источник Питания 2161 SE 4
R1 Резистор

82 кОм

4 0,5Вт В блокнот
R2 Резистор

4.7 Ом

1 0,25Вт В блокнот
R3, R4 Резистор

33 Ом

2 0,25Вт В блокнот
R5 Резистор