Структура и механизм действия ферментов. Ферменты

Белковой природы, которые выполняют в организме роль

Механизм действия ферментов

Выяснение механизмов, лежащих в основе каталитического является одной из фундаментальных задач и актуальных проблем не только энзимологии, но и современной молекулярной биохимии и биологии.

Задолго до того как стали доступны чистые ферменты и была выяснена их природа, сложилось убеждение, что решающее значение для осуществления ферментативного процесса имеет соединение фермента с субстратом. Попытки обнаружить комплексное соединение фермента с субстратом долгое время не приводили к успеху, поскольку такой комплекс лабилен, он очень быстро распадается. Использование метода спектроскопии дало возможность выявить фермент-субстратные комплексы для каталазы, пероксидазы, алкогольдегидрогеназы, флавинзависимых ферментов.

Метод рентгеноструктурного анализа позволил получить много важных сведений о структуре и каталитических механизмах действия ферментов. Этот метод был использован для установления связи аналогов субстрата с ферментами лизоцимом и химотрипсином.

Некоторые прямые доказательства существования энзим-субстратных комплексов удалось получить для случаев, когда на одной из стадий каталитического цикла фермент оказывается связанным с субстратом ковалентной связью. В качестве примера может служить n-нитрофенилацетата, катализируемая химотрипсином. При смешивании фермента с этим эфиром химотрипсин ацетилируется по гидроксильной группе реакционно-способного остатка серина. Эта стадия протекает быстро, однако гидролиз ацетилхимотрипсина с образованием ацетата и свободною химотрипсина идет значительно медленнее. Поэтому в присутствии n-нитрофенилацетата накапливается ацетилхимотрипсин, который легко обнаружить.

Наличие субстрата в составе фермента можно «уловить» путем перевода неустойчивого комплекса ЕС в неактивную форму, например, обработкой фермент-субстратного комплекса боргидридом натрия, обладающего сильным восстановительным действием. Подобный комплекс в виде устойчивого ковалентного производного был обнаружен в ферменте альдолазе. Оказалось, что с молекулой субстрата взаимодействует е-аминогруппа лизина.

Субстрат взаимодействует с ферментом в определенной части, которая называется активным центром, или активной зоной фермента.

Под активным центром, или активной зоной, понимают ту часть молекулы ферментного белка, которая соединяется с субстратом (и кофакторами) и обусловливает ферментативные свойства молекулы. Активный центр определяет специфичность и каталитическую активность фермента и должен представлять собой структуру определенной степени сложности, приспособленную для тесного сближения и взаимодействия с молекулой субстрата или ее частями, непосредственно участвующими в реакции.

Среди функциональных групп различают входящие в состав «каталитически активного» участка фермента и образующие участок, обеспечивающий специфическое сродство (связывание субстрата с ферментом) — так называемый контактный, или «якорный» (или адсорбционный участок активного центра фермента).

Механизм действия энзимов объясняет теория Михаэлиса-Ментен. Согласно этой теории, процесс происходит в четыре этапа.

Механизм действия ферментов: I этап

Между субстратом (С) и энзимом (Е) возникает связь - образуется фермент-субстратный комплекс ЕС, в котором компоненты связаны между собой ковалентными, ионными, водными и другими связями.

Механизм действия ферментов: IІ этап

Субстрат под воздействием присоединенного фермента активируется и становится доступным для соответствующих реакций катализа ЕС.

Механизм действия ферментов: IІI этап

Совершается катализ ЕС. Эта теория подтверждена экспериментальными исследованиями.

И наконец, IV стадия характеризуется освобождением молекулы фермента Е и продуктов реакции Р. Последовательность преобразований можно отобразить так: Е+С - ЕС - ЕС* - Е+Р.

Специфичность действия ферментов

Каждый энзим действует на определенный субстрат или группу веществ, которые подобны по своей структуре. Специфичность действия ферментов объясняется сходством конфигурации активного центра и субстрата. В процессе взаимодействия образуется фермент-субстратный комплекс.

Глава IV .3.

Ферменты

Обменвеществ в организме можно определить как совокупность всех химических превращений, которым подвергаются соединения, поступающие извне. Эти превращения включают все известные виды химических реакций: межмолекулярный перенос функциональных групп, гидролитическое и негидролитическое расщепления химических связей, внутримолекулярная перестройка, новообразование химических связей и окислительно - восстановительные реакции. Такие реакции протекают в организме с чрезвычайно большой скоростью только в присутствии катализаторов. Все биологические катализаторы представляют собой вещества белковой природы и носят названия ферменты (далее Ф) или энзимы (Е).

Ферменты не являются компонентами реакций, а лишь ускоряют достижение равновесия увеличивая скорость как прямого, так и обратного превращения. Ускорение реакции происходит за счет снижении энергии активации – того энергетического барьера, который отделяет одно состояние системы (исходное химическое соединение) от другого (продукт реакции).

Ферменты ускоряют самые различные реакции в организме. Так достаточно простая с точки зрения традиционной химии реакция отщепления воды от угольной кислоты с образованием СО 2 требует участия фермента, т.к. без него она протекает слишком медленно для регулирования рН крови. Благодаря каталитическому действию ферментов в организме становится возможным протекание таких реакций, которые без катализатора шли бы в сотни и тысячи раз медленнее.

Свойства ферментов

1. Влияние на скорость химической реакции: ферменты увеличивают скорость химической реакции, но сами при этом не расходуются.

Скорость реакции – это изменение концентрации компонентов реакции в единицу времени. Если она идет в прямом направлении, то пропорциональна концентрации реагирующих веществ, если в обратном – то пропорциональна концентрации продуктов реакции. Отношение скоростей прямой и обратной реакций называется константой равновесия. Ферменты не могут изменять величины константы равновесия, но состояние равновесия в присутствии ферментов наступает быстрее.

2. Специфичность действия ферментов. В клетках организма протекает 2-3 тыс. реакций, каждая из которые катализирутся определенным ферментом. Специфичность действия фермента – это способность ускорять протекание одной определенной реакции, не влияя на скорость остальных, даже очень похожих.

Различают:

Абсолютную – когда Ф катализирует только одну определенную реакцию (аргиназа – расщепление аргинина)

Относительную (групповую спец) – Ф катализирует определенный класс реакций (напр. гидролитическое расщепление) или реакции при участии определенного класса веществ.

Специфичность ферментов обусловлена их уникальной аминокислотной последовательностью, от которойзависит конформация активного центра, взаимодействующего с компонентами реакции.

Вещество, химическое превращение которого катализируется ферментом носит название субстрат ( S ) .

3. Активность ферментов – способность в разной степени ускорять скорость реакции. Активность выражают в:

1) Международных единицах активности – (МЕ) количество фермента, катализирующего превращение 1 мкМ субстрата за 1 мин.

2)Каталах (кат) – количество катализатора (фермента), способное превращать 1 моль субстрата за 1 с.

3) Удельной активности – число единиц активности (любых из вышеперечисленных) в исследуемом образце к общей массе белка в этом образце.

4) Реже используют молярную активность – количество молекул субстрата превращенных одной молекулой фермента за минуту.

Активность зависит в первую очередь от температуры . Наибольшую активность тот или иной фермент проявляет при оптимальной температуре. Для Ф живого организма это значение находится в пределах +37,0 - +39,0 ° С, в зависимости от вида животного. При понижении температуры, замедляется броуновское движение, уменьшается скорость диффузии и, следовательно, замедляется процесс образования комплекса между ферментом и компонентами реакции (субстратами). В случае повышения температуры выше +40 - +50 ° С молекула фермента, которая является белком, подвергается процессу денатурации. При этом скорость химической реакции заметно падает (рис. 4.3.1.).

Активность ферментовзависит также от рН среды . Для большинства из них существует определенное оптимальное значение рН, при котором их активность максимальна. Поскольку в клетке содержатся сотни ферментов и для каждого из них существуют свои пределы опт рН, то изменение рН это один из важных факторов регуляции ферментативной активности. Так, в результате одной химреакции при участии определенного фермента рН опт которого лежит в перделах 7.0 – 7.2 образуется продукт, который является кислотой. При этом значение рН смещается в область 5,5 – 6.0. Активность фермента резко снижается, скорость образования продуктазамедляется, но при этом активизируется другой фермент, для которого эти значения рН оптимальны и продукт первой реакции подвергается дальнейшему химическому превращению. (Еще пример про пепсин и трипсин).

Химическая природа ферментов. Строение фермента. Активный и аллостерический центры

Все ферменты это белки с молекулярной массой от 15 000 до нескольких млн Да. По химическому строению различают простые ферменты (состоят только из АК) и сложные ферменты (имеют небелковую часть или простетическую группу). Белковая часть носит название – апофермент, а небелковая, если она связана ковалентно с апоферментом, то называется кофермент, а если связь нековалентная (ионная, водородная) – кофактор . Функции простетической группы следующие: участие в акте катализа, осуществление контакта между ферментом и субстратом, стабилизация молекулы фермента в пространстве.

В роли кофактора обычно выступают неорганические вещества- ионы цинка, меди, калия, магния, кальция, железа, молибдена.

Коферменты можно рассматривать как составную часть молекулы фермента. Это органические вещества, среди которых различают: нуклеотиды (АТФ , УМФ , и пр), витамины или их производные (ТДФ – из тиамина (В 1 ), ФМН – из рибофлавина (В 2 ), коэнзим А – из пантотеновой кислоты (В 3 ), НАД и пр) и тетрапиррольные коферменты – гемы.

В процессе катализа реакции в контакт с субстратом вступает не вся молекула фермента, а определенный ее участок, который называется активным центром . Эта зона молекулы не состоит из последовательности аминокислот, а формируется при скручивании белковой молекулы в третичную структуру. Отдельные участки аминокислот сближаются между собой, образуя определенную конфигурацию активного центра. Важная особенность строения активного центра - его поверхность комплементарна поверхности субстрата, т.е. остатки АК этой зоны фермента способны вступать в химическое взаимодействие с определенными группами субстрата. Можно представить, что активный центр фермента совпадает со структурой субстрата как ключ и замок.

В активном центре различают две зоны: центр связывания , ответственный за присоединение субстрата, и каталитический центр , отвечающий за химическое превращение субстрата. В состав каталитического центра большинства ферментов входят такие АК, как Сер, Цис, Гис, Тир, Лиз. Сложные ферменты в каталитическом центре имеют кофактор или кофермент.

Помимо активного центра ряд ферментов снабжен регуляторным (аллостерическим) центром. С этой зоной фермента взаимодействуют вещества, влияющие на его каталитическую активность.

Механизм действия ферментов

Акт катализа складывается из трех последовательных этапов.

1. Образование фермент-субстратного комплекса при взаимодействии через активный центр.

2. Связывание субстрата происходит в нескольких точках активного центра, что приводит к изменению структуры субстрата, его деформации за счет изменения энергии связей в молекуле. Это вторая стадия и называется она активацией субстрата. При этом происходит определенная химическая модификация субстрата и превращение его в новый продукт или продукты.

3. В результате такого превращения новое вещество (продукт) утрачивает способность удерживаться в активном центре фермента и фермент-субстратный, вернее уже фермент-продуктный комплекс диссоциирует (распадается).

Виды каталитических реакций:

А+Е = АЕ = БЕ = Е + Б

А+Б +Е = АЕ+Б = АБЕ = АБ + Е

АБ+Е = АБЕ = А+Б+Е,где Е - энзим, А и Б - субстраты, либо продукты реакции.

Ферментативные эффекторы - вещества, изменяющие скорость ферментативного катализа и регулирующие за счет этого метаболизм. Среди них различают ингибиторы - замедляющие скорость реакции и активаторы - ускоряющие ферментативную реакцию.

В зависимости от механизма торможения реакции различают конкурентные и неконкурентные ингибиторы. Строение молекулы конкурентного ингибитора сходно со структурой субстрата и совпадает с поверхностью активного центра как ключ с замком (или почти совпадает). Степень этого сходства может даже быть выше чем с субстратом.

Если А+Е = АЕ = БЕ = Е + Б, тоИ+Е = ИЕ ¹

Концентрация способного к катализу фермента при этом снижается и скорость образование продуктов реакции резко падает (рис. 4.3.2.).


В качестве конкурентных ингибиторов выступает большое число химических веществ эндогенного и экзогенного происхождения (т.е. образующихся в организме и поступающих извне – ксенобиотики, соответственно). Эндогенные вещества являются регуляторами метаболизма и называются антиметаболитами. Многие из них используют при лечении онкологических и микробных заболеваний, тк. они ингибируют ключевые метаболичекие реакции микроорганизмов (сульфаниламиды) и опухолевых клеток. Но при избытке субстрата и малой концентрации конкурентного ингибитора его действие отменяется.

Второй вид ингибиторов - неконкурентные. Они взаимодействую с ферментом вне активного центра и избыток субстрата не влияет на их ингибирующую способность, как в случае с конкурентными ингибиторами. Эти ингибиторы взаимодействуют или с определенными группами фермента (тяжелые металлы связываются с тиоловыми группами Цис) или чаще всего регуляторным центром, что снижает связывающую способность активного центра. Собственно процесс ингибирования - это полное или частичное подавление активности фермента при сохранении его первичной и пространственной структуры.

Различают также обратимое и необратимое ингибирование. Необратимые ингибиторы инактивируют фермент, образуя с его АК или другими компонентами структуры химическую связь. Обычно это ковалентная связь с одним из участков активного центра. Такой комплекс практически недиссоциирует в физиологических условиях. В другом случае ингибитор нарушает конформационную структуру молекулы фермента - вызывает его денатурацию.

Действие обратимых ингибиторов может быть снято при переизбытке субстрата или под действием веществ, изменяющих химическую структуру ингибитора. Конкурентные и неконкурентные ингибиторы относятся в большинстве случаев к обратимым.

Помимо ингибиторов известны еще активаторы ферментативного катализа. Они:

1) защищают молекулу фермента от инактивирующих воздействий,

2) образуют с субстратом комплекс, который более активно связывается с активным центром Ф,

3) взаимодействуя с ферментом, имеющим четвертичную структуру, разъединяют его субъединицы и тем самым открывают доступ субстрату к активному центру.

Распределение ферментов в организме

Ферменты, участвующие в синтезе белков, нуклеиновых кислот и ферменты энергетического обмена присутствуют во всех клетках организма. Но клетки, которые выполняют специальные функции содержат и специальные ферменты. Так клетки островков Лангерганса в поджелудочной железе содержат ферменты, катализирующие синтез гормонов инсулина и глюкагона. Ферменты, свойственные только клеткам определенных органов называют органоспецифическими: аргиназа и урокиназа - печень, кислая фосфатаза - простата. По изменению концентрации таких ферментов в крови судят о наличии патологий в данных органах.

В клетке отдельные ферменты распределены по всей цитоплазме, другие встроены в мембраны митохондрий и эндоплазматического ретикулума, такие ферменты образуют компартменты, в которых происходят определенные, тесно связанные между собой этапы метаболизма.

Многие ферменты образуются в клетках и секретируются в анатомические полости в неактивном состоянии - это проферменты. Часто в виде проферментов образуются протеолитические ферменты (расщепляющие белки). Затем под воздействием рН или других ферментов и субстратов происходит их химическая модификация и активный центр становится доступным для субстратов.

Существуют также изоферменты - ферменты, отличающиеся по молекулярной структуре, но выполняющие одинаковую функцию.

Номенклатура и классификация ферментов

Название фермента формируется из следующих частей:

1. название субстрата с которым он взаимодействует

2. характер катализируемой реакции

3. наименование класса ферментов (но это необязательно)

4. суффикс -аза-

пируват - декарбоксил - аза,сукцинат - дегидроген - аза

Посколькууже известно порядка 3 тыс. ферментов их необходимо классифицировать. В настоящее время принята международная классификация ферментов, в основу которой положен тип катализируемой реакции. Выделяют 6 классов, которые в свою очередь делятся на ряд подклассов (в данной книге представлены только выборочно):

1. Оксидоредуктазы. Катализируют окислительно-восстановительные реакции. Делятся на 17 подклассов. Все ферменты содержат небелковую часть в виде гема или производных витаминов В 2 , В 5 . Субстрат, подвергающийся окислению выступает как донор водорода.

1.1. Дегидрогеназы отщепляют от одного субстрата водород и переносят на другие субстраты. Коферменты НАД, НАДФ, ФАД, ФМН. Они акцептируют на себе отщепленный ферментом водород превращаясь при этом в восстановленную форму (НАДН, НАДФН, ФАДН) и переносят к другому фермент-субстратному комплексу, где его и отдают.

1.2. Оксидазы - катализирует перенос водорода на кислород с образованием воды или Н 2 О 2 . Ф. Цитохромокисдаза дыхательной цепи.

RH + NAD H + O 2 = ROH + NAD + H 2 O

1.3. Монооксидазы - цитохром Р450 . По своему строению одновременно гемо- и флавопротеид. Он гидроксилирует липофильные ксенобиотики (по вышеописанному механизму).

1.4. Пероксидазы и каталазы - катализируют разложение перекисиводорода, которая образуется в ходе метаболических реакций.

1.5. Оксигеназы - катализируют реакции присоединения кислорода к субстрату.

2. Трансферазы - катализируют перенос различных радикалов от молекулы донора к молекуле акцептору.

Аа + Е + В = Еа + А + В = Е + Ва + А

2.1. Метилтрансферазы (СН 3 -).

2.2.Карбоксил- и карбамоилтрансферазы.

2.2. Ацилтрансферазы – Кофермент А (перенос ацильной группы - R -С=О).

Пример: синтез нейромедиатора ацетилхолина (см.главу "Обмен белков").

2.3. Гексозилтрансферазы- катализируют перенос гликозильных остатков.

Пример: отщепление молекулы глюкозы от гликогена под действием фосфорилазы .

2.4. Аминотрансферазы - перенос аминогрупп

R 1- CO - R 2 + R 1 - CH - NH 3 - R 2 = R 1 - CH - NH 3 - R 2 + R 1- CO - R 2

Играют важную роль в превращении АК. Общим коферментом являнтся пиридоксальфосфат.

Пример: аланинаминотрансфераза (АлАТ): пируват + глутамат = аланин + альфа-кетоглутарат (см.главу "Обмен белков").

2.5. Фосфотрансфереза (киназа) - катализируют перенос остатка фосфорной кислоты. В большинстве случает донором фосфата является АТФ. В процессе расщепления глюкозы в основном принимают участие ферменты этого класса.

Пример: Гексо (глюко)киназа .

3. Гидролазы - катализируют реакции гидролиза, т.е. расщепление веществ с присоединением по месту разрыва связи воды. К этому классу относятся преимущественно пищеварительные ферменты, они однокомпонентные (не содержат небелковой части)

R1-R2 +H 2 O = R1H + R2OH

3.1. Эстеразы - расщепляют эфирные связи. Это большой подкласс ферментов, катализирующих гидролиз тиоловых эфиров, фосфоэфиров.
Пример: NH 2 ).

Пример: аргиназа (цикл мочевины).

4.Лиазы - катализируют реакции расщепления молекул без присоединения воды. Эти ферменты имеют небелковую часть в виде тиаминпирофосфата (В 1) и пиридоксальфосфата (В 6).

4.1. Лиазы связи С-С. Их обычно называют декарбоксилазами.

Пример: пируватдекарбоксилаза .

5.Изомеразы - катализируют реакции изомеризации.

Пример: фосфопентозоизомераза, пентозофосфатизомераза (ферменты неокислительной ветви пентозофосфатного пути).

6.Лигазы катализируют реакции синтеза более сложных веществ из простых. Такие реакции идут с затратой энергии АТФ. К названию таких ферментов прибавляют "синтетаза".

ЛИТЕРАТУРА К ГЛАВЕ IV .3.

1. Бышевский А. Ш., Терсенов О. А. Биохимия для врача // Екатеринбург: Уральский рабочий, 1994, 384 с.;

2. Кнорре Д. Г., Мызина С. Д. Биологическая химия. – М.: Высш. шк. 1998, 479 с.;

3. Филиппович Ю. Б., Егорова Т. А., Севастьянова Г. А. Практикум по общей биохимии // М.: Просвящение, 1982, 311с.;

4. Ленинджер А. Биохимия. Молекулярные основы структуры и функций клетки // М.: Мир, 1974, 956 с.;

5. Пустовалова Л.М. Практикум по биохимии // Ростов-на Дону: Феникс, 1999, 540 с.

Ферменты. Механизм действия ферментов (биохимия)

Ферментами или энзимами называют специфические белки, входящие в состав всех клеток и тканей живых организмов и выполняющие роль биологических катализаторов.


Общие свойства ферментов и неорганических катализаторов:

1. Не расходуются в процессе реакции.

2. Оказывают свое действие при малых концентрациях.

3. Не оказывают влияния на величину константы равновесия реакции.

4. Их действие подчиняется закону действующих масс.

5. Не ускоряют термодинамически невозможных реакций.


Отличия ферментов от неорганических катализаторов.

1. Термолабильность ферментов.

2. Зависимость активности ферментов от рН среды.

3. Специфичность действия ферментов.

4. Скорость ферментативных реакций подчиняется определенным кинетическим закономерностям.

5. Активность ферментов зависит от действия регуляторов – активаторов и ингибиторов.

6. Ряд ферментов при формировании третичной и четвертичной структуры подвергаются постсинтетической модификации.

7. Размеры молекулы ферментов обычно намного превышают размеры их субстратов.

Структура молекулы ферментов

По строению ферменты могут быть простыми и сложными белками. Фермент, являющийся сложным белком называют холоферментом. Белковая часть фермента называется апоферментом, небелковая часть – кофактором.


Различают два типа кофакторов:

1. Простетическая группа – прочно связана с апоферментом, часто ковалентными связями.

2. Кофермент – небелковая часть, легко отделяемая от апофермента. Часто коферментами служат производные витаминов.


К коферментам относятся следующие соединения:

1. производные витаминов;

2. гемы, входящие в состав цитохромов, каталазы, пероксидазы, гуанилатциклазы, NO-синтазы и являющиеся простетической группой ферментов;

3. нуклеотиды – доноры и акцепторы остатка фосфорной кислоты;

4. убихинон или кофермент Q, участвующий в переносе электронов и протонов в цепи тканевого дыхания;

5. фосфоаденозилфосфосульфат, участвующий в переносе сульфата;

6. глутатион, участвующий в окислительно-восстановительных реакциях.


Таблица 3.1. Коферментные функции витаминов

Коферментная форма

В 1 -тиамин

тиаминдифосфат

транскетолаза

пируватдегидрогеназа

В 2 -рибофлавин

флавинзависимые дегидрогеназы

В 3 -пантотеновая кислота

кофермент А (КоА)

реакции ацилирования

В 6 -пиридоксин

пиридоксаль-фосфат

аминотрансферазы

РР-никотинамид

НАД(НАДФ)-зависимые дегидрогеназы

Фолиевая кислота

ТГФК (тетрагидрофолиевая кислота)

перенос одноуглеродных групп

Кофакторы – ионы металлов

Более 25 % всех ферментов для проявления полной каталитической активности нуждается в ионах металлов. Рассмотрим их роль в ферментативном катализе.


Роль металлов в присоединении субстрата в активном центре фермента.

Ионы металла выполняют функцию стабилизаторов молекулы субстрата, активного центра фермента и конформации белковой молекулы фермента, а именно третичной и четвертичной структур.


Ионы металлов – стабилизаторы молекулы субстрата.

Для некоторых ферментов субстратом служит комплекс превращаемого вещества с ионом металла. Например, для большинства киназ в качестве одного из субстратов выступает не молекула АТФ, а комплекс Mg 2+ -АТФ. В этом случае ион Mg 2+ не взаимодействует непосредственно с ферментом, а участвует в стабилизации молекулы АТФ и нейтрализации отрицательного заряда субстрата, что облегчает его присоединение к активному центру фермента.

Схематично роль кофактора при взаимодействии фермента и субстрата можно представить как комплекс E-S-Me, где Е – фермент, S – субстрат, Ме – ион металла.


Ионы металлов – стабилизаторы активного центра фермента.

В некоторых случаях ионы металлов служат «мостиком» между ферментом и субстратом. Они выполняют функцию стабилизаторов активного центра, облегчая присоединение к нему субстрата и протекание химической реакции. В ряде случаев ион металла может способствовать присоединению кофермента. Перечисленные выше функции выполняют такие металлы, как Mg 2+ , Mn 2+ , Zn2+, Co 2+ , Mo 2+ . В отсутствие металла эти ферменты активностью не обладают. Такие ферменты получили название «металлоэнзимы».

К металлоэнзимам относят, например, фермент пируваткиназу.


Роль металлов в стабилизации структуры фермента.

Ионы металлов обеспечивают сохранение вторичной, третичной, четвертичной структуры молекулы фермента. Такие ферменты в отсутствие ионов металлов способны к химическому катализу, однако они нестабильны. Их активность снижается и даже полностью исчезает при небольших изменениях рН, температуры и других незначительных изменениях внешнего окружения. Таким образом, ионы металлов выполняют функцию стабилизаторов оптимальной конформации белковой молекулы.

Иногда в стабилизации вторичной и третичной структуры принимают участие ионы щёлочноземельных металлов. Так, для поддержания третичной конформации пируваткиназы необходимы ионы К + .

Для стабилизации четвертичной структуры алкогольдегидрогеназы, катализирующей реакцию окисления этанола, необходимы ионы цинка.


Роль металлов в ферментативном катализе

Не менее важную роль отводят ионам металлов в осуществлении ферментативного катализа.


Участие металлов в электрофильном катализе.

Наиболее часто эту функцию выполняют ионы металлов с переменной валентностью, имеющие свободную d-орбиталь и выступающие в качестве электрофилов. Это, в первую очередь, такие металлы, как Zn 2+ , Fe 2+ , Mn 2+ , Cu 2+ . Ионы щелочных металлов, такие так Na + и К + , не обладают этим свойством.

В ходе электрофильного катализа ионы металлов часто участвуют в стабилизации промежуточных соединений.

Участие металлов в окислительно-восстановительных реакциях. Ионы металлов с переменной валентностью могут также участвовать в переносе электронов. Например, в цитохромах (гемсодержащих белках) ион железа способен присоединять и отдавать один электрон.

Благодаря этому свойству цитохромы участвуют в окислительно-восстановительных реакциях.

Активный центр фермента

Участок молекулы фермента, который специфически взаимодействует с субстратом, называется активным центром. Активный центр – это уникальная комбинация аминокислотных остатков в молекуле фермента, обеспечивающая непосредственное взаимодействие её с молекулой субстрата и принимающая прямое участие в акте катализа. У сложных ферментов в состав активного центра входит также кофактор. В активном центре условно различают каталитический участок, непосредственно вступающий в химическое взаимодействие с субстратом и участок связывания, который обеспечивает специфическое сродство к субстрату и формирование его комплекса с ферментом.


Свойства активных центров ферментов:

1. На активный центр приходится относительно малая часть общего объема фермента.

2. Активный центр имеет форму узкого углубления или щели в глобуле фермента.

3. Активный центр – это трехмерное образование, в формировании которого участвуют функциональные группы линейно удаленных друг от друга аминокислот.

4. Субстраты относительно слабо связываются с активным центром.

5. Специфичность связывания субстрата зависит от строго определенного расположения атомов и функциональных групп в активном центре.


У некоторых регуляторных ферментов имеется еще один центр, называемый аллостерическим или регуляторным. Он пространственно разделен с активным центром.


Аллостерический центр – это участок молекулы фермента, с которым связываются определенные обычно низкомолекулярные вещества (аллостерические регуляторы), молекулы которых не сходны по строению с субстратом. Присоединение регулятора к аллостерическому центру приводит к изменению третичной и четвертичной структуры молекулы фермента и, соответственно, конформации активного центра, вызывая снижение или повышение ферментативной активности.

Механизм действия ферментов

В любой ферментативной реакции выделяют следующую стадийность:

E + S ↔ ↔E + P

где Е – фермент, S – субстрат, – фермент-субстратный комплекс, Р – продукт.


Механизм действия ферментов может быть рассмотрен с двух позиций: с точки зрения изменения энергетики химических реакций и с точки зрения событий в активном центре.


Энергетические изменения при химических реакциях

Любые химические реакции протекают, подчиняясь двум основным законам термодинамики: закону сохранения энергии и закону энтропии. Согласно этим законам, общая энергия химической системы и её окружения остаётся постоянной, при этом химическая система стремится к снижению упорядоченности (увеличению энтропии). Для понимания энергетики химической реакции недостаточно знать энергетический баланс входящих и выходящих из реакции веществ. Необходимо учитывать изменения энергии в процессе данной химической реакции и роль ферментов в динамике этого процесса.

Чем больше молекул обладает энергией, превышающей уровень Еа (энергия активации) тем выше скорость химической реакции. Повысить скорость химической реакции можно нагреванием. При этом увеличивается энергия реагирующих молекул. Однако, для живых организмов высокие температуры губительны, поэтому в клетке для ускорения химических реакций используются ферменты. Ферменты обеспечивают высокую скорость реакций при оптимальных условиях, существующих в клетке, путём понижения уровня Еа. Таким образом, ферменты снижают высоту энергетического барьера, в результате чего возрастает количество реакционноспособных молекул, и, следовательно, увеличивается скорость реакции.


Роль активного центра в ферментативном катализе

В результате исследований было показано, что молекула фермента, как правило, во много раз больше молекулы субстрата, подвергающегося химическому превращению этим ферментом. В контакт с субстратом вступает лишь небольшая часть молекулы фермента, обычно от 5 до 10 аминокислотных остатков, формирующих активный центр фермента. Роль остальных аминокислотных остатков состоит в обеспечении правильной конформации молекулы фермента для оптимального протекания химической реакции.

Активный центр на всех этапах ферментативного катализа нельзя рассматривать как пассивный участок для связывания субстрата. Это комплексная молекулярная «машина», использующая разнообразные химические механизмы, способствующие превращению субстрата в продукт.

В активном центре фермента субстраты располагаются таким образом, чтобы участвующие в реакции функциональные группы субстратов находились в непосредственной близости друг к другу. Это свойство активного центра называют эффектом сближения и ориентации реагентов. Такое упорядоченное расположение субстратов вызывает уменьшение энтропии и, как следствие, снижение энергии активации (Еа), что определяет каталитическую эффективность ферментов.

Активный центр фермента также способствует дестабилизации межатомных связей в молекуле субстрата, что облегчает протекание химической реакции и образование продуктов. Это свойство активного центра называют эффектом деформации субстрата.

Молекулярные механизмы ферментативного катализа

Механизмы ферментативного катализа определяются ролью функциональных групп активного центра фермента в химической реакции превращения субстрата в продукт.


Выделяют 2 основных механизма ферментативного катализа:

1. кислотно-основной катализ

2. ковалентный катализ.


Кислотно-основной катализ

Концепция кислотно-основного катализа объясняет ферментативную активность участием в химической реакции кислотных групп (доноры протонов) и/или основных групп (акцепторы протонов). Кислотно-основной катализ – часто встречающееся явление. Аминокислотные остатки, входящие в состав активного центра, имеют функциональные группы, проявляющие свойства как кислот, так и оснований.

К аминокислотам, участвующим в кислотно-основном катализе, в первую очередь относят Цис, Тир, Сер, Лиз, Глу, Асп и Гис. Радикалы этих аминокислот в протонированной форме – кислоты (доноры протона), в депротонированной – основания (акцепторы протона). Благодаря этому свойству функциональных групп активного центра ферменты становятся уникальными биологическими катализаторами, в отличие от небиологических катализаторов, способных проявлять либо кислотные, либо основные свойства.


Ковалентный катализ

Ковалентный катализ основан на атаке нуклеофильных (отрицательно заряженных) или электрофильных (положительно заряженных) групп активного центра фермента молекулами субстрата с формированием ковалентной связи между субстратом и коферментом или функциональной группой аминокислотного остатка (как правило, одной) активного центра фермента.

Действие сериновых протеаз, таких как трипсин, химотрипсин и тромбин, - пример механизма ковалентного катализа, когда ковалентная связь образуется между субстратом и аминокислотным остатком серина активного центра фермента. Термин «сериновые протеазы» связан с тем, что аминокислотный остаток серина входит в состав активного центра всех этих ферментов и участвует непосредственно в катализе. Рассмотрим механизм ковалентного катализа на примере химотрипсина, осуществляющего гидролиз пептидных связей при переваривании белков в двенадцатиперстной кишке. Субстратами химотрипсина служат пептиды, содержащие аминокислоты с ароматическими и циклическими гидрофобными радикалами (Фен, Тир, Три), что указывает на участие гидрофобных сил в формировании фермент-субстратного комплекса.

Специфичность действия ферментов

Ферменты обладают более высокой специфичностью действия по сравнению с неорганическими катализаторами. Различают специфичность по отношению к типу химической реакции, катализируемой ферментом, и специфичность по отношению к субстрату. Эти два вида специфичности характерны для каждого фермента.

Специфичность по отношению к субстрату – это предпочтительность фермента к субстрату определенной структуры в сравнении с другими субстратами.


Различают 4 вида субстратной специфичности ферментов:

1. Абсолютная специфичность – способность фермента катализировать превращение только одного субстрата. Например – глюкокиназа фосфорилирует только глюкозу, аргиназа расщепляет только аргинин, уреаза – мочевину.

2. Относительная специфичность – фермент катализирует превращение нескольких субстратов, имеющих один тип связи. Например – липаза расщепляет сложноэфирную связь в триацилглицеролах.

3. Относительная групповая специфичность – фермент катализирует превращение нескольких субстратов, имеющих один тип связи, но требуется наличие определенных функциональных групп, входящих в состав субстратов. Например, все протеолитические ферменты расщепляют пептидную связь, но пепсин – образованную аминогруппами ароматических аминокислот, химотрипсин – образованную карбоксильными группами этих же аминокислот, трипсин – пептидную связь, образованную карбоксильной группой лизина, аргинина.

4. Стереохимическая специфичность – фермент катализирует превращение только одного стереоизомера. Например, бактериальная аспартатдекарбоксилаза катализирует декарбоксилирование только L-аспартата и не действует на D-аспарагиновую кислоту.


Специфичность по отношению к реакции

Каждый фермент катализирует одну реакцию или группу реакций одного типа. Часто одно и то же химическое соединение выступает как субстрат для разных ферментов, причем каждый из них катализирует специфическую для него реакцию, приводящую к образованию разных продуктов. Специфичность по типу реакции лежит в основе единой классификации ферментов.

До последнего времени считалось, что абсолютно все ферменты являются веществами белковой природы. Но в 80-е годы была обнаружена каталитическая активность у некоторых низкомолекулярных РНК. Эти ферменты назвалирибозимами . Остальные, свыше 2000 известных в настоящее время ферментов, имеют белковую природу и характеризуются всеми свойствами белков.

По строению ферменты делятся на:

1.простые или однокомпонентные;

2.сложные или двухкомпонентные (холоферменты).

Простые ферменты представляют собой простые белки и при гидролизе распадаются только на аминокислоты. К числу простых ферментов относятся гидролитические ферменты (пепсин, трипсин, уреаза и др.).

Сложные белки являются сложными белками и, помимо, полипептидных цепей содержат небелковый компонент (кофактор ). К сложным белкам относится большинство ферментов.Белковая часть двухкомпонентного фермента называется апоферментом. Кофакторы могут иметь различную прочность связи с апоферментом.Если кофактор прочно связан с полипептидной цепью, он называется простетической группой . Между простетической группой и апоферментом – ковалентная связь.

Если кофактор легко отделяется от апофермента и способен к самостоятельному существованию, то такой кофактор называется коферментом.

Между апоферментом и коферментом связи слабые – водородные, электростатические и др.

Химическая природа кофакторовкрайне разнообразна. Роль кофакторов в двухкомпонентных ферментах играют:

1 – большинство витаминов (Е, К, Q, С, Н, В 1 , В 2 , В 6 , В 12 и др.);

2 соединения нуклеотидной природы (НАД,НАДФ, АТФ, КоА, ФАД, ФМН), а также целый ряд др. соединений;

3 – липолевая кислота;

4 – многие двухвалентные металлы (Мg 2+ , Mn 2+ ,Ca 2+ и др.).

Активный центр ферментов.

Ферменты – высокомолекулярные вещества, молекулярный вес которых достигает нескольких млн. Молекулы субстратов, взаимодействующих с ферментами обычно имеют гораздо меньший размер. Поэтому естественно предположить, что с субстратом взаимодействует не вся молекула фермента в целом, а только какая-то ее часть – так называемый «активный центр» фермента.

Активный центр фермента – это часть его молекулы, непосредственно взаимодействующая с субстратами, участвующая в акте катализа.

Активный центр фермента формируется на уровне третичной структуры. Поэтому при денатурации, когда третичная структура нарушается, фермент теряет свою каталитическую активность!

Активный центр в свою очередь состоит из:

1.каталитического центра, который осуществляет химическое превращение субстрата;

2.субстратного центра («якорной» или контактной площадки), которая обеспечивает присоединение субстрата к ферменту, формирование фермент-субстратного комплекса.

Четкую грань между каталитическим и субстратным центром провести можно не всегда – у некоторых ферментов они совпадают или перекрываются.

Помимо активного центра, в молекуле фермента существует т.н. аллостерический центр. Это участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного вещества (эффектора), изменяется третичная структура фермента. Это приводит к изменению конфигурации активного центра и, следовательно, к изменению активности фермента. Это явление аллостерической регуляции активности фермента.

Многие ферменты являются мультимерами (или олигомерами), т.е. состоят из двух и более субъединиц- протомеров (аналогично четвертичной структуре белка).

Связи между субъединицами, в основном, не ковалентные. Максимальную каталитическую активность фермент проявляет именно в виде мультимера. Диссоциация на протомеры резко снижает активность фермента.

Ферменты – мультимеры содержат обычно четкое число субъединиц (2-4), т.е. являются ди- и тетрамерами. Хотя известны гекса- и октамеры (6-8) и чрезвычайно редко встречаются тримеры и пентамеры (3-5).

Ферменты-мультимеры могут быть построены как из одинаковых, так и из разных субъединиц.

Если ферменты-мультимеры образованы из субъединиц различных типов, они могут существовать в виде нескольких изомеров. Множественные формы фермента называют изоферментами (изоэнзимами или изозимами).

Например, фермент состоит из 4 субъединиц типов А и Б. Он может образовать 5 изомеров: АААА, АААБ, ААББ, АБББ, ББББ. Эти изомерные ферменты являются изоферментами.

Изоферменты катализируют одну и ту же химическую реакцию, обычно воздействуют на один и тот же субстрат, но отличаются по некоторым физико-химическим свойствам (молекулярной массе, аминокислотному составу, электрофоретической подвижности и др.), по локализации в органах и тканях.

Особую группу ферментов составляют т.н. мультимерные комплексы. Это системы ферментов, катализирующих последовательные стадии превращения какого-либо субстрата. Такие системы характеризуются прочностью связи и строгой пространственной организацией ферментов, обеспечивающей минимальный путь прохождения субстрата и максимальную скорость его превращения.

Примером может служить мультиферментный комплекс, осуществляющий окислительное декарбоксилирование пировиноградной кислоты. Комплекс состоит из 3-х видов ферментов (М.в. = 4 500 000).

Механизм действия ферментов

Механизм действия ферментов заключается в следующем. При соединении субстрата с ферментом образуется нестойкий фермент субстратный комплекс. В нем происходит активация молекулы субстрата за счет:

1. поляризации химических связей в молекуле субстрат и перераспределение электронной плотности;

2. деформации связей, вовлекаемых в реакцию;

3. сближения и необходимой взаимной ориентации молекул субстрата (S).

Молекула субстрат фиксируется в активном центре фермента в напряженной конфигурации, в деформированном состоянии, что приводит к ослаблению прочности химических связей и снижает уровень энергетического барьера, т.е. субстрат активизируется.

В процессе ферментативной реакции различают 4 этапа:

1 – присоединение молекулы субстрата к ферменту и образование фермент-субстратного комплекса;

2 – изменение субстрата под действием фермента, делающее его доступным для химической реакции, т.е. активизация субстрата;

3 – химическая реакция;

4 – отделение продуктов реакции от фермента.

Это можно записать в виде схемы:

E + SESES* EPE + P

где: Е – фермент, S – субстрат, S* - активизированный субстрат, Р – продукт реакции.

На 1-ом этапе к субстратному центру присоединяется с помощью слабых взаимодействий та часть молекулы субстрата, которая не подвергается химическим превращениям. Для образования фермент-субстратного комплекса (ES) необходимо соблюдение трех условий, которые и определяют высокую специфичность действия фермента.

Условия образования фермент-субстратного комплекса:

1.структурное соответствие между субстратом и активным центром фермента. По выражению Фишера они должны подходить друг к другу, «как ключ к замку». Это подобие обеспечивается на уровне третичной структуры фермента, т.е. пространственного расположения функциональных групп активного центра.

2.электростатическое соответствие активного центра фермента и субстрата, которое обусловлено взаимодействием противоположно заряженных групп.

3.гибкость третичной структуры фермента – «индуцированное соответствие». Согласно теории вынужденного или индуцированного соответствия каталитически активная конфигурация молекулы фермента может возникать лишь в момент присоединения субстрата в результате его деформирующего воздействия по принципу «рука-перчатка».

Механизм действия однокомпонентных и двухкомпонентных ферментов аналогичен.

В образовании фермент-субстратного комплекса у сложных ферментов принимают участие и апофермент и кофермент. При этом субстратный центр располагается обычно на апоферменте, а кофермент принимает участие непосредственно в акте химического превращения субстрата. На последнем этапе реакции апофермент и кофермент выделяются в неизменном виде.

На 2 и 3 этапе превращение молекулы субстрата связано с разрывом и замыканием ковалентных связей.

После осуществления химических реакций фермент переходит в исходное состояние и происходит отделение продуктов реакции.

Способность фермента катализировать определенный тип реакции называют специфичностью.

Специфичность бывает трех видов:

1.относительная или групповая специфичность – фермент действует на определенный вид химической связи (например, фермент пепсин расщепляет пептидную связь);

2.абсолютная специфичность - фермент действует только на один строго определенный субстрат (например, фермент уреаза расщепляет амидную связь только в мочевине);

3.стехиометрическая специфичность – фермент действует только на один из стереоизомеров (например, фермент глюкозидаза сбраживает только D-глюкозу, но не действует на L-глюкозу).

Специфичность фермента обеспечивает упорядоченность протекания реакций обмена веществ.

Механизм действия ферментов

Механизм действия ферментов может быть рассмотрен с двух позиций: с точки зрения изменения энергетики химических реакций и с точки зрения событий в активном центре.

А. Энергетические изменения при химических реакциях

Любые химические реакции протекают, подчиняясь двум основным законам термодинамики: закону сохранения энергии и закону энтропии. Согласно этим законам, общая энергия химической системы и её окружения остаётся постоянной, при этом химическая система стремится к снижению упорядоченности (увеличению энтропии). Для понимания энергетики химической реакции недостаточно знать энергетический баланс входящих и выходящих из реакции реагентов, необходимо учитывать изменения энергии в процессе данной химической реакции и роль ферментов в динамике этого процесса. Рассмотрим реакцию разложения угольной кислоты:

Н 2 СО 3 > Н 2 0 + С0 2 .

Угольная кислота слабая; реакция её разложения пойдёт цри обычных условиях, если молекулы угольной кислоты имеют энергию, превышающую определённый уровень, называемый энергией активации Е а (рис. 2-10).

Энергией активации называют дополнительное количество кинетической энергии, необходимое молекулам вещества, чтобы они вступили в реакцию.

При достижении этого энергетического барьера в молекуле происходят изменения, вызывающие перераспределение химических связей и образование новых соединений. Говорят, что молекулы, обладающие Е а, находятся в переходном состоянии. Разницу энергий между исходным реагентом Н 2 СО 3 и конечными соединениями Н 2 О и СО 2 называют изменением свободной


Рис. 2-10. Изменение свободной энергии при разложении угольной кислоты.

Энергии реакции DG. Молекулы Н 2 О и СО 2 - более стабильные вещества, чем Н 2 СО 3 , т.е. обладают меньшей энергией и при обычных условиях практически не реагируют. Выделившаяся энергия в результате этой реакции рассеивается в виде тепла в окружающую среду.

Чем больше молекул обладает энергией, превышающей уровень Е а, тем выше скорость химической реакции. Повысить скорость химической реакции можно нагреванием. При этом увеличивается энергия реагирующих молекул. Однако для живых организмов высокие температуры губительны, поэтому в клетке для ускорения химических реакций используются ферменты. Ферменты обеспечивают высокую скорость реакций при оптимальных условиях, существующих в клетке, путём понижения уровня Е а. Таким образом, ферменты снижают высоту энергетического барьера, в результате возрастает количество реакционно-способных молекул, следовательно, увеличивается скорость реакции.

В механизме ферментативного катализа решающее значение имеет образование нестойких промежуточных соединений - фермент-субстратный комплекс ES, подвергающийся превращению в нестабильный переходный комплекс ЕР, который почти мгновенно распадается на свободный фермент и продукт реакции.

Таким образом, биологические катализаторы (ферменты) не изменяют свободную энергию

субстратов и продуктов и поэтому не меняют равновесие реакции (рис. 2-11).

Фермент, выполняя функцию катализатора химической реакции, подчиняется общим законам катализа и обладает всеми свойствами, характерными для небиологических катализаторов, однако имеет и отличительные свойства, связанные с особенностями строения ферментов.

Сходство ферментов с небиологическими катализаторами заключается в том, что:

  • · ферменты катализируют энергетически возможные реакции;
  • · энергия химической системы остаётся постоянной;
  • · в ходе катализа направление реакции не изменяется;
  • · ферменты не расходуются в процессе реакции.

Отличия ферментов от небиологических катализаторов заключаются в том, что:

  • · скорость ферментативных реакций выше, чем реакций, катализируемых небелковыми катализаторами;
  • · ферменты обладают высокой специфичностью;
  • · ферментативная реакция проходит в клетке, т.е. при температуре 37 °С, постоянном атмосферном давлении и физиологическом значении рН;
  • · скорость ферментативной реакции может регулироваться.

1. Формирование фермент-субстратного комплекса

Тот факт, что ферменты обладают высокой специфичностью, позволил в 1890 г. выдвинуть гипотезу, согласно которой активный центр фермента комплементарен субстрату, т.е. соответствует ему как "ключ замку". После взаимодействия субстрата ("ключ") с активным центром ("замок") происходят химические превращения субстрата в продукт. Активный центр при этом рассматривался как стабильная, жёстко детерминированная структура.

В 1959 г. был предложен другой вариант гипотезы "ключ-замок", объясняющий события в активном центре фермента. По этой гипотезе активный центр является гибкой структурой


Рис. 2-11. Изменение свободной энергии в ходе химической реакции, некатализируемой и катализируемой ферментами.

Фермент понижает энергию активации Е а, т.е. снижает высоту энергетического барьера, в результате возрастает доля реакционно-способных молекул, следовательно, увеличивается скорость реакции по отношению к субстрату. Субстрат, взаимодействуя с активным центром фермента, вызывает изменение его конформации, приводя к формированию фермент-субстратного комплекса, благоприятного для химических модификаций субстрата. При этом молекула субстрата также изменяет свою конформацию, что обеспечивает более высокую эффективность ферментативной реакции. Эта "гипотеза индуцированного соответствия" впоследствии получила экспериментальное подтверждение.

2. Последовательность событий в ходе ферментативного катализа

Процесс ферментативного катализа условно можно разделить на следующие этапы (рис. 2-12). субстратный катализ химический реакция

Первый, второй и четвёртый этапы катализа непродолжительны и зависят от концентрации субстрата (для первого этапа) и констант связывания лигандов в активном центре фермента (для первого и третьего этапов). Изменения энергетики химической реакции на этих стадиях незначительны.

Третий этап наиболее медленный; длительность его зависит от энергии активации химической реакции. На этой стадии происходят разрыв связей в молекуле субстрата, образование новых связей и формирование молекулы продукта.

3. Роль активного центра в ферментативном катализе

В результате исследований было показано, что молекула фермента, как правило, во много раз больше молекулы субстрата, подвергающегося химическому превращению этим ферментом. В контакт с субстратом вступает лишь небольшая часть молекулы фермента, обычно от 5 до 10 аминокислотных остатков, формирующих активный центр фермента. Роль остальных аминокислотных остатков состоит в обеспечении правильной конформации молекулы фермента для оптимального протекания химической реакции.

Активный центр на всех этапах ферментативного катализа нельзя рассматривать как пассивный участок для связывания субстрата. Это комплексная молекулярная "машина", использующая разнообразные химические механизмы, способствующие превращению субстрата в продукт.

В активном центре фермента субстраты располагаются таким образом, чтобы участвующие в реакции функциональные группы субстратов находились в непосредственной близости друг к другу. Это свойство активного центра называют эффектом сближения и ориентации реагентов. Такое упорядоченное расположение субстратов вызывает уменьшение энтропии и, как следствие, снижение энергии активации (Е а), что определяет каталитическую эффективность ферментов.

Активный центр фермента также способствует дестабилизации межатомных связей в молекуле субстрата, что облегчает протекание химической реакции и образование продуктов. Это свойство активного центра называют эффектом деформации субстрата (рис. 2-12).


Рис. 2-12. Этапы ферментативного катализа.

I - этап сближения и ориентации субстрата относительно активного центра фермента; II - образование фермент-субстратного комплекса (ES) в результате индуцированного соответствия; III - деформация субстрата и образование нестабильного комплекса фермент-продукт (ЕР); IV- распад комплекса (ЕР) с высвобождением продуктов реакции из активного центра фермента и освобождением фермента.

В. Молекулярные механизмы ферментативного катализа

Механизмы ферментативного катализа определяются ролью функциональных групп активного центра фермента в химической реакции превращения субстрата в продукт. Выделяют 2 основных механизма ферментативного катализа: кислотно-основной катализ и ковалентный катализ.

1. Кислотно-основной катализ

Концепция кислотно-основного катализа объясняет ферментативную активность участием в химической реакции кислотных групп (доноры протонов) и/или основных групп (акцепторы протонов). Кислотно-основной катализ - часто встречающееся явление. Аминокислотные остатки, входящие в состав активного центра, имеют функциональные группы, проявляющие свойства как кислот, так и оснований.

К аминокислотам, участвующим в кислотно-основном катализе, в первую очередь относят Цис, Тир, Сер, Лиз, Глу, Асп и Гис. Радикалы этих аминокислот в протонированной форме - кислоты (доноры протона), в депротонированной - основания (акцепторы протона). Благодаря этому свойству функциональных групп активного центра ферменты становятся уникальными биологическими катализаторами, в отличие от небиологических катализаторов, способных проявлять либо кислотные, либо основные свойства.

Примером кислотно-основного катализа, в которм кофакторами являются ионы Zn 2+ , а в качестве кофермента используется молекула NAD + , можно привести фермент алкогольдегидрогеназу печени, катализирующую реакцию окисления спирта (рис. 2-13):

С 2 Н 5 ОН + NAD + > СН 3 -СОН + NADH + H

2. Ковалентный катализ

Ковалентный катализ основан на атаке нук-леофильных (отрицательно заряженных) или электрофильных (положительно заряженных) групп активного центра фермента молекулами субстрата с формированием ковалентной связи между субстратом и коферментом или функциональной группой аминокислотного остатка (как правило, одной) активного центра фермента.

Действие сериновых протеаз, таких как трипсин, химотрипсин и тромбин, - пример механизма ковалентного катализа, когда ковалентная связь образуется между субстратом и аминокислотным остатком серина активного центра фермента. Термин "сериновые протеазы" связан с тем, что аминокислотный остаток серина входит в состав активного центра всех этих ферментов и участвует непосредственно в катализе. Рассмотрим механизм ковалентного катализа на примере хи-мотрипсина, осуществляющего гидролиз пептидных связей при переваривании белков в двенадцатиперстной кишке (см. раздел 9). Субстратами химотрипсина служат пептиды, содержащие аминокислоты с ароматическими и циклическими


Рис. 2-13. Механизм кислотно-основного катализа на примере алкогольдегидрогеназы печени.

I - молекула этилового спирта имеет центр связывания, обеспечивающий гидрофобное взаимодействие активного центра и метильной группы спирта; II - положительно заряженный атом цинка способствует отщеплению протона от спиртовой группы этанола с образованием отрицательно заряженного атома кислорода. Отрицательный заряд перераспределяется между атомом кислорода и соседним атомом водорода, который затем в виде гидритиона переносится на четвёртый углеродный атом никотинамида кофермента NAD+; III - в результате формируется восстановленная форма NADH и уксусный альдегид.

Гидрофобными радикалами (Фен, Тир, Три), что указывает на участие гидрофобных сил в формировании фермент-субстратного комплекса. Механизм ковалентного катализа химотрипсина рассмотрен на рис. 2-14.

Радикалы Асп 102 , Гис 57 и Сер 195 участвуют непосредственно в акте катализа. Вследствие нуклеофильной атаки пептидной связи субстрата происходит разрыв этой связи с образованием ковалентно-модифицированного серина - ацил-химотрипсина. Другой пептидный фрагмент высвобождается в результате разрыва водородной связи между пептидным фрагментом и Гис 57 активного центра химотрипсина. Заключительный этап гидролиза пептидной связи белков - деацилирование химотрипсина в присутствии молекулы воды с высвобождением второго фрагмента гидролизуемого белка и исходной формы фермента.