Реальные газы. Уравнение Ван-дер-Ваальса

Реальным газом называют газ, между молекулами которого существуют заметные силы взаимодействия. В неидеальных, газах под высоким давлением, газах с большой плотностью взаимодействие молекул велико и его необходимо учитывать. Силы притяжения играют наиболее существенную роль на больших расстояниях между молекулами. Расстояние уменьшается, силы притяжения растут, но до определенного предела, затем они начинают уменьшаться и переходят в силы отталкивания. Притяжение и отталкивание молекул можно разделить и рассматривать и учитывать отдельно друг от друга.

Уравнение Ван-дер-Ваальса

Уравнение Ван-дер-Ваальса, описывающее состояние 1 моля реального газа, имеет вид:

Уравнение Ван-дер-Ваальса

\[\left(p+\frac{a}{V^2_{\mu }}\right)\left(V_{\mu }-b\right)=RT\ \left(1\right),\]

где${\ V}_{\mu }$- молярный объем газа, $\frac{a}{V^2_{\mu }}$- внутреннее давление, обусловленное силами притяжения между молекулами, b -- поправка на собственный объем молекул, которая учитывает действие сил отталкивания между молекулами, причем

где d- диаметр молекулы,

величина a вычисляется по формуле:

где $W_p\left(r\right)$- потенциальная энергия притяжения двух молекул. Необходимо заметить, что газовая постоянная имеет индивидуальное значение для каждого вещества. Она отличается от молярной газовой постоянной, причем она меньше, что говорит об объединении молекул вещества в комплексы около критического состояния. Вдали от критических состояний можно использовать универсальную газовую постоянную.

С увеличением объема роль поправок в уравнении (1) становится менее существенной. И в пределе уравнение (1) переходит в уравнение состояния идеального газа для 1 моля (4):

Уравнение (4) -- уравнение Менделеева -- Клайперона, где m- масса газа, $R=8,31\ \frac{Дж}{моль\cdot К}$- универсальная газовая постоянная.

Это согласуется с тем фактом, что при уменьшении плотности реальные газы по своим свойствам приближаются к идеальным.

Уравнение (1) может быть записано в вириальной форме:

\[{pV}_m=RT+\frac{RTb"-a"}{V_m}+RT\sum\limits^{\infty }_{n=2}{\frac{{b"}^n}{V^n_m}}\ \left(5\right),\]

где $V_m=\frac{V}{\nu }.$

Для анализа изотерм уравнение (1) удобнее представить в виде:

Рассматриваемое уравнение может описывать и свойства жидкости, например плохую ее сжимаемость.

На рис.1 изображена изотерма Ван-дер-Ваальса для некоторого постоянного значения температуры T, построенная из соответствующего уравнения.

Такая зависимость на практике невозможна. Опыт показывает, что график должен иметь вид рис.2 то есть существуют области, в которых при изменении объема давление неизменно. В некоторых отрезках график изотермы параллелен оси V (рис 2). Это область фазового перехода. Жидкость и газ существую одновременно.

По мере увеличения температуры участок, отражающий состояние нахождения газа одновременно в двух фазах на графиках p(V), сужается и превращается в точку (рис. 2). Это особая точка К, в которой пропадает различие между жидкостью и паром. Это так называемая критическая точка.

Вывод

Итак, уравнение Ван-дер-Ваальса описывает поведение газов близких к реальным. Их можно применить к газообразной и жидкой фазам вещества. Эти уравнения отражают существование фазового перехода газ -- жидкость. Показывают наличие критической точки перехода. Однако абсолютно точных количественных результатов расчеты, в которых используются вышеназванные уравнения, не дают.

Пример 1

Задание: Газ в количестве 1 моль находится в сосуде объемом V л при температуре $T_1$ давление газа $p_1$, а при $T_2$ давление газа $p_2$. Найти постоянные Ван-дер-Ваальса.

Запишем уравнение Ван-дер-Ваальса для одного моля реального газа для состояний 1 и 2:

\[\left(p_1+\frac{a}{V^2_{\mu }}\right)\left(V_{\mu }-b\right)=RT_1\ \left(1.1\right).\] \[\left(p_2+\frac{a}{V^2_{\mu }}\right)\left(V_{\mu }-b\right)=RT_2\ \left(1.2\right).\]

Раскроем скобки в (1.1):

\ \

Вычтем $\left(1.4\right).\ из\ \left(1.3\right):$

\ \ \[-p_1b{+p}_2b=RT_1-RT_2-p_1V_{\mu }+p_2V_{\mu }\to b=\frac{RT_1-RT_2-p_1V_{\mu }+p_2V_{\mu }}{p_2-p_1}\left(1.5\right).\]

Выразим a из (1.1):

Ответ: $b=\frac{RT_1-RT_2-p_1V_{\mu }+p_2V_{\mu }}{p_2-p_1},\ a=\frac{RT_1-p_1V_{\mu }+p_1b}{\left(\frac{1}{V_{\mu }}-\frac{b}{V^2_{\mu }}\right)}$.

Пример 2

Задание: Для реального газа, используя уравнение Ван-дер-Ваальса, получите уравнение адиабаты в параметрах V и T.

\[\delta Q=dU+\partial A=0\ \left(\ 2.1\right)\]

Так как процесс адиабатный, то он идет теплообмена. Перепишем уравнение (2.1) для ван-дер-ваальсовского газа, зная, что:

\ \

Из уравнения Ван-дер-Ваальса:

\[\left(p+\frac{a}{V^2}\right)\left(V-b\right)=RT\ \to p+\frac{a}{V^2}=\frac{RT}{\left(V-b\right)}\ \left(2.5\right)\]

Подставим (2.5) в (2.4), разделим переменные:

\[\frac{RT}{\left(V-b\right)}dV+\frac{i}{2}\nu RdT\ =0\to \frac{Rd(V-b)}{\left(V-b\right)}=-\frac{i}{2}\nu R\frac{dT}{T}(2.6)\ \] \[\frac{d(V-b)}{\frac{i}{2}\nu \left(V-b\right)}=-\frac{dT}{T}(2.7)\ \]

Проинтегрируем (2.7):

Ln$\left({\left(V-b\right)}^{\frac{i}{2}\nu }T\right)=0\to {\left(V-b\right)}^{\frac{i}{2}\nu }T=const.$

Ответ: Уравнение адиабаты для заданного случая имеет вид: ${\left(V-b\right)}^{\frac{i}{2}\nu }T=const.$

При высоких температурах последний член в (5) можно опустить, и тогда изотерма будет гиперболой, асимптотами которой являются изобара Р = 0 и изохора V = b .

Для исследования изотерм при любых значениях Т умножим уравнение (4) на V 2 . После раскрытия скобок уравнение изотермы примет вид (6)

Это уравнение третьей степени по V , в которое давление Р входит в качестве параметра. Поскольку его коэффициенты вещественны, уравнение имеет либо один вещественный корень, либо три корня. Каждому корню на плоскости (V,P ) соответствует точка, в которой изобара Р = const пересекает изотерму. В первом случае, когда корень один и точка пересечения будет одна. Так будет, как мы видели, при любых давлениях, если температура достаточно высока. Изотерма имеет вид монотонно опускающейся кривой MN .

При более низких температурах и надлежащих значениях давления Р уравнение (6) имеет три корня V 1 , V 2 , V 3 . В таких случаях изобара P = const пересекает изотерму в трех точках L, C, G (рис. 1). Изотерма содержит волнообразный участок LBCAG. Она сначала монотонно опускается вниз (участок DB ), затем на участке BA монотонно поднимается вверх, а за точкой A снова монотонно опускается. При некоторой промежуточной температуре три корня V 1 , V 2 , V 3 становятся равными. Такая температура и соответствующая ей изотерма называются критическими . Критическая изотерма FKH всюду монотонно опускается вниз, за исключением одной точки K, являющейся точкой перегиба изотермы. В ней касательная к изотерме горизонтальна. Точка K называется критической точкой. Соответствующие ей давление P k , объем V k и температура T k называются также критическими. Говорят, что вещество находится в критическом состоянии , если его объем и давление (а следовательно, и температура) равны критическим.

Для нахождения критических параметров P k , V k , T k учтем, что в критической точке уравнение (6) переходит в уравнение (7).

Поскольку в этом случае все три корня совпадают и равны V k , уравнение должно приводиться к виду (8).

Возводя в куб и сравнивая коэффициенты уравнений (7) и (8), получим три уравнения .

Решая их, найдем выражения для параметров критического состояния вещества: (9).

К тем же результатам можно прийти, заметив, что критическая точка К является точкой перегиба изотермы, касательная в которой горизонтальна, а поэтому в точке К должны соблюдаться соотношения .



Решая эти уравнения совместно с уравнением изотермы (4) придем к формулам (9).

Не все состояния вещества, совместимые с уравнением Ван-дер-Ваальса, могут быть реализованы в действительности. Для этого необходимо еще, чтобы они были термодинамически устойчивы. Одно из необходимых условий термодинамической устойчивости физически однородного вещества состоит в выполнении неравенства . Физически оно означает, что при изотермическом увеличении давления объем тела должен уменьшаться. Иными словами, при возрастании V все изотермы должны монотонно опускаться. Между тем, ниже критической температуры на изотермах Ван-дер-Ваальса имеются поднимающиеся участки типа BCA (рис. 1). Точки, лежащие на таких участках, соответствуют неустойчивым состояниям вещества, которые практически реализованы быть не могут. При переходе к практическим изотермам эти участки должны быть выброшены.

Таким образом, реальная изотерма распадается на две ветви EGA и BLD , отделенные друг от друга. Естественно предположить, что этим двум ветвям соответствуют различные агрегатные состояния вещества. Ветвь EA характеризуется относительно большими значениями объема или малыми значениями плотности, она соответствует газообразному состоянию вещества. Напротив, ветвь BD характеризуется относительно малыми объемами, а следовательно, большими плотностями, она соответствует жидкому состоянию вещества . Мы распространяем, следовательно, уравнение Ван-дер-Ваальса и на область жидкого состояния. Таким путем удается получить удовлетворительное качественное описание явления перехода газа в жидкость и обратно.

Возьмем достаточно разреженный газ при температуре ниже критической. Исходное состояние его на диаграмме PV изображается точкой E (рис. 1). Будем сжимать газ квазистатически, поддерживая температуру T постоянной. Тогда точка, изображающая состояние газа, будет перемещаться по изотерме вверх. Можно было думать, что она достигает крайнего положения A , где изотерма обрывается. В действительности, однако, начиная с некоторой точки G , давление в системе перестает повышаться, и она распадается на две физически однородные части, или фазы : газообразную и жидкую.

Процесс изотермического сжатия такой двухфазной системы изображается участком GL горизонтальной прямой. При этом во время сжатия плотности жидкости и газа остаются неизменными и равными их значениям в точках L и G соответственно. По мере сжатия количество вещества в газообразной фазе непрерывно уменьшается, а в жидкой фазе - увеличивается, пока не будет достигнута точка L, в которой все вещество перейдет в жидкое состояние.

Эндрюс систематически исследовал ход изотерм углекислоты (СО 2) при различных температурах и на основе этих исследований ввел понятие критической температуры. Углекислота им была выбрана сознательно, так как она обладает критической температурой (31 0 С), лишь незначительно превышающей комнатную, и сравнительно невысоким критическим давлением (72,9 атм). Оказалось, что при температуре выше 31 0 С изотермы углекислоты монотонно опускаются вниз, т.е. имеют гиперболический вид. Ниже этой температуры на изотермах углекислоты появляются горизонтальные участки, на которых изотермическое сжатие газа приводит к его конденсации, но не к увеличению давления. Таким путем было установлено, что сжатием газ можно превратить в жидкость только тогда, когда его температура ниже критической.

При специальных условиях могут быть реализованы состояния, изображаемые участками изотермы GA и BL. Эти состояния называются метастабильными. Участок GA изображает так называемый пересыщенный пар , участок BL - перегретую жидкость . Обе фазы обладают ограниченной устойчивостью. Каждая из них может существовать до тех пор, пока она не граничит с другой более устойчивой фазой. Например, пересыщенный пар переходит в насыщенный, если в него ввести капли жидкости. Перегретая жидкость закипает, если в нее попадают пузырьки воздуха или пара.

Уравнение состояния идеального газа достаточно хорошо изображает поведение реальных газов при высоких температурах и низких давлениях. Однако когда температура и давление таковы, что газ близок к конденсации, то наблюдаются значительные отклонения от законов идеального газа.

Среди ряда уравнений состояния, предложенных для изображения поведения реальных газов, особенно интересно уравнение Ван-дер-Ваальса вследствие его простоты и вследствие того, что оно удовлетворительно описывает поведение многих веществ в широком интервале температур и давлений.

Ван-дер-Ваальс вывел свое уравнение из соображений, основанных на кинетической теории, учитывая, в качестве первого приближения величину молекул и силы взаимодействия между ними. Его уравнение состояния (написанное для одного моля вещества) таково:

где константы, зависящие от особенностей данного вещества. При уравнение (99) превращается в уравнение идеального газа. Член описывает эффект, связанный с конечной величиной молекул, а член изображает эффект молекулярных сил взаимодействия.

На рис. 14 показаны некоторые изотермы, вычисленные согласно уравнению Ван-дер-Ваальса. Сравнивая эти изотермы с изотермами рис. 13, мы видим, что их очертания имеют много сходства. В обоих случаях на одной изотерме есть точка перегиба Изотерма, содержащая точку перегиба - критическая изотерма, а сама точка перегиба - критическая точка. Изотермы при температуре выше критической в обоих случаях ведут себя похоже. Однако изотермы ниже критической температуры существенно различаются. Изотермы Ван-дер-Ваальса являются непрерывными кривыми с минимумом и максимумом, тогда как изотермы на рис. 13

имеют две «угловые» точки и являются горизонтальными в той области, где изотермы Ван-дер-Ваальса содержат максимум и минимум.

Причина качественно различного поведения двух семейств изотерм в районе, обозначенном на рис. 13, заключается в том, что точки горизонтального отрезка изотерм на рис. 13 не соответствуют гомогенному состоянию, так как на этих участках вещество разделилось на жидкую и парообразную части.

Если мы изотермически сжимаем ненасыщенный пар до тех пор, пока не достигнем давления насыщения, а затем по-прежнему продолжаем уменьшать объем, то конденсация части пара не сопровождается дальнейшим увеличением давления, что соответствует горизонтальным изотермам рис. 13. Однако если очень осторожно сжимать пар и сохранять его свободным от частичек пыли, то можно достигнуть давления значительно более высокого, чем давление насыщения в момент наступления конденсации. Когда осуществляется подобная ситуация, пар оказывается перегретым. Но перегретое состояние неустойчиво (лабильно). В результате какого-либо даже легкого нарушения состояния может произойти конденсация, причем система перейдет в устойчивое (стабильное) состояние, характеризуемое наличием жидкой и парообразной частей.

Неустойчивые состояния важны для нашего обсуждения, так как они иллюстрируют возможность существования гомогенных состояний в той области значений параметров, которые характерны для насыщенного пара над жидкостью. Предположим, что эти неустойчивые состояния изображены участком изотермы Ван-дер-Ваальса на рис. 15. Горизонтальный участок непрерывной изотермы показывает устойчивые состояния жидкость - пар. Если бы можно было осуществить все нёустойчивые состояния на изотерме Ван-дер-Ваальса, то они походили бы при непрерывном изотермическом процессе от пара, показанного участком изотермы, до жидкости, изображенной участком Если известна изотерма Ван-дер-Ваальса, то можно определить, каково давление насыщенного пара при заданной температуре, или, на геометрическом языке, как высоко над осью следует начертить горизонтальный отрезок который соответствует состоянию жидкость - пар. Докажем, что это расстояние должно быть таким, чтобы площади и были равны. Для доказательства покажем сначала, что работа, совершаемая

системой во время обратимого изотермического цикла, всегда равна нулю. Из уравнения (16) следует, что работа, совершаемая во время цикла, равна теплоте, поглощаемой системой. Но для обратимого цикла остается в силе равенство (66), а так как наш цикл изотермич ескии, то можно вынести из-под знака интеграла в (66). Уравнение (66) показывает, что вся поглощаемая теплота и, следовательно, вся выполняемая во время цикла работа равпы нулю.

Теперь рассмотрим обратимый изотермический цикл (рис. 15).

Работа, совершаемая во время цикла, должна обратиться в нуль.

Участок проходится по ходу часовой стрелки, поэтому соответствующая площадь положительна, а участок против часовой стрелки, и соответствующая площадь отрицательна. Поскольку вся площадь цикла равна нулю, то абсолютные величины площадей двух циклов и должны быть равны, что и требовалось доказать.

Могло бы возникнуть следующее возражение против приведенного выше доказательства: так как площадь изотермического цикла очевидно, не равна нулю, то не верно, что работа, совершаемая во время обратимого изотермического цикла, всегда равна нулю. Ответ на это возражение таков: цикл не является обратимым.

Чтобы убедиться в этом, заметим, что точка на диаграмме изображает два различных состояния, в зависимости от того, рассматривается ли она как точка изотермы Ван-дер-Ваальса или как точка на изотерме жидкость - пар. Объем и давление, изображенные точкой одинаковы в обоих случаях, но на изотерме Ван-дер-Ваальса D изображает неустойчивое гомогенное (однородное) состояние, а на изотерме жидкость - пар устойчивое негомогенное (неоднородное) состояние, образованное из жидкой и газообразной частей. Когда мы совершаем цикл то проходим от состояния на изотерме Ван-дер-Ваальса к состоянию на изотерме жидкость-пар. Так как состояние на изотерме жидкость - пар более устойчиво, чем на изотерме Ван-дер-Ваальса, то этот путь необратим - его нельзя было бы самопроизвольно осуществить в обратном направлении. Таким образом, весь цикл является необратимым, и поэтому площадь цикла не должна равняться нулю.

Критические значения вещества могут быть выражены через константы которые входят в уравнение Ван-дер-Ваальса.

Уравнение Ван-дер-Ваальса (99), когда и заданы, является уравнением третьей степени относительно Поэтому, вообще говоря, существует три различных корня V (при фиксированных значениях Однако критическая изотерма имеет горизонтальную точку перегиба при т. е. при кривая третьего порядка - критическая изотерма - касается горизонтальной линии Отсюда следует, что кубическое уравнение для V, которое получится, если положить в имеет тройной корень Это уравнение можно записать в виде

Так как тройной корень приведенного уравнения, то левая часть должна иметь форму Сравнивая, находим

Решив эти три уравнения для получим

Эти уравнения выражают критические значения через

Целесообразно отметить, что если использовать как единицы объема, давления и температуры, то уравнение Ван-дер-Ваальса имеет одинаковую форму для всех веществ.

и используя равенства (100), из (99) получим:

Так как это уравнение содеридат только численные константы, то оно одинаково для всех веществ. Состояния различных веществ, которые определяются теми же величинами называются соответственными состояниями, и (101) часто называется «уравнением Ван-дер-Ваальса для соответственных состояний».

В разделе 14 было показано, что если вещество подчиняется уравнению состояния идеального газа то можно вывести термодинамически, что его энергия определяется лишь температурой и не зависит от объема. Этот результат верен только для

Уравнение Ван–дер–Ваальса (7.1.2) – одно из первых уравнений состояния реального газа. Данное уравнение учитывает конечные размеры всех молекул, что становится существенным при больших давлениях, а также притяжение молекул в результате межмолекулярного взаимодействия.

Уравнение состояния реального газа, предложенное Ван–дер–Ваальсом можно получить из следующих рассуждений. Учтем влияние конечных размеров молекул на уравнение состояния реального газа. Давление определяется средней кинетической энергией теплового движения всех молекул Р = nkT. 7.2.1 При конечных размерах молекул, имеющих радиус r, область 4p(2r) 3 /3 вокруг каждой из молекул будет недоступна для попадания в нее другой неточечной молекулы. В результате в сосуде, содержащем N молекул конечных размеров, область объемом (N/2)4p(2r) 3 /3 = 4NV молек (V молек = 4pr 3 /3 – объем одной молекулы) будет недоступна для столкновений. Поэтому можно считать, что половина всех молекул занимает объем b = 4NV молек и покоится, а другая половина представляет собой точечные молекулы и движется с удвоенной кинетической энергией, обладая температурой Т´ = 2Т. Объем, доступный точечным молекулам, будет равен V - b , а давление, оказываемое на стенки сосуда, определяется точечными подвижными молекулами (N´ = N/2):

Р = n´kT´ =

Если в сосуде находится один моль газа, то уравнение состояния примет вид (N = N A , N A k = R, b = 4N A V молек):

P(V - b) = RT.

Для v = m/m молей газа уравнение состояния газа с учетом конечного размера молекул примет вид

P(V - nb) = nRT.

Отметим, что это уравнение является приближенным и выведено в предположении только парных столкновений. При больших давлениях это условие уже не выполняется, и возможно одновременное соприкосновение трех и более частиц, а такие случаи были исключены из рассмотрения.

Рассмотрим теперь влияние сил притяжения на уравнение состояния идеального газа. Будем считать для простоты частицы газа точечными. Наличие сил притяжения между ними, действующих на больших расстояниях, приводит к появлению дополнительного внутреннего воздействия на газ. Это обусловлено тем, что в то время как в объеме газа действие сил притяжения между молекулами в среднем уравновешивается, на границе «газ – стенка сосуда» действие сил притяжения со стороны газа остается не скомпенсированным, и появляется избыточная сила, направленная в сторону газа (рис. 7.3).


Рис. 7.3

Дополнительное внутреннее давление пропорционально числу частиц, приходящихся на единицу площади границы n S и силе взаимодействия этих частиц с другими частицами газа, находящимися в единице объема n V .

В результате избыточное внутреннее давление P i (i - intrinsic) будет пропорционально квадрату концентрации числа частиц

P i ~ n S n V ~ N 2 /V 2 ,

где N – полное число частиц в сосуде объема V . Если N = N A – в сосуде находится один моль газа, то запишем

P i = a/V 2 ,
где а – постоянная величина, своя для каждого сорта газа. В случае v -молей имеем

P i = v 2 a/V 2 .

С учетом внутреннего давления уравнение состояния примет вид

P + P i = nkT.

Давление P i не зависит от материала стенки, в противном случае удалось бы создать вечный двигатель первого рода. Роль стенки может играть и сам газ. Достаточно для этого выполнить мысленное сечение произвольной плоскостью любой внутренней области объема газа. Полученное уравнение, с учетом выражения для P i переходит в новое уравнение состояния реального газа при наличии сил притяжения:

(P + v 2 a/V 2)V = vRT.

Учитывая совместное действие сил притяжения и сил отталкивания и полученные поправки для объема и давления в уравнении Менделеева – Клапейрона, получим уравнение Ван–дер–Ваальса для реального газа:

(P + v 2 a/V 2)(V - vb) = vRT , (7.2.3)

или для одного моля:

. 7.2.4

Данное уравнение справедливо при условии vb и v 2 a/V 2 Помимо этого предполагается, что частицы газа сферически симметричны. Поскольку реально это не так, то даже для неплотных газов величины а и b зависят от температуры. Константы Ван–дер–Ваальса и критические данные приведены в таблице 7.1

Таблица 7.1.

Pk ,
атм

Vk ,
м 3 /кмоль

Т k ,
К

а ,
ат×м 6 /кмоль2

b ,
м 3 /кмоль

R /N A k

HCl
H 2
He
H 2 O
O 2
N 2
CO 2

86
13,2
2,34
225
51,4
34,8
75

0,060
0,065
0,058
0,055
0,075
0,090
0,096

324,6
33,2
5,2
647,3
154,3
126,0
304,1

0,922
0,194
0,035
5,65
1,40
1,39
3,72

0,020
0,022
0,024
0,031
0,032
0,039
0,043

0,469
0,813
0,821
0,602
0,768
0,782
0,745

Примечание. Константы а и b выбраны таким образом, чтобы получить оптимальное согласование уравнения Ван–дер–Ваальса с измеренными изотермами для комнатной температуры. Для плотных газов уравнение Ван–дер–Ваальса как количественное соотношение не годится. Однако качественно оно позволяет описывать поведение газов при высоких давлениях, конденсацию газов и переход газов в критическое состояние.

Как мы уже упоминали, при низких температурах и высоких давлениях уравнение состояния идеального газа Менделеева – Клапейрона непригодно.

Учитывая собственный объём молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван – дер – Ваальс (1837 – 1923 г.г.) вывел уравнение " реального газа ", используя две поправки для уравнения Менделеева – Клапейрона.

Учёт собственного объёма молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объём других молекул, приводит к тому, что фактический свободный объём, в котором могут двигаться молекулы реального газа, будет равен не V μ (как в уравнении Менделеева – Клапейрона для одного моля газа), а V = (V μ -b) , где b – поправка на собственный объём молекул.

Можно показать, что поправка b равна учетверённому объёму молекул. Действительно, если, например, сближаются две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы (оболочки молекул считаются непроницаемыми). Это означает, что для центров обеих молекул оказывается недоступным сферический объём радиуса d, т.е. объём, равный восьми объёмам молекулы или учетверённому объёму молекулы в расчёте на одну молекулу.

Учёт притяжения молекул. Поскольку при определённых расстояниях между молекулами действуют силы притяжения (а они, как мы уже говорили, проявляются раньше сил отталкивания), то их действие приводит к появлению " дополнительного " действия на молекулы " идеального " газа. Это давление Ван – дер – Ваальс назвал " внутренним " давлением. По модели "реального" газа вычисления показали, что " внутреннее " давление молекул обратно пропорционально квадрату молярного объёма, т.е.:

, (17.6)

где а – вторая постоянная (поправка) Ван – дер – Ваальса, характеризующая действие сил межмолекулярного притяжения, V μ – молярный объём газа.

Вводя эти поправки, получим итоговое уравнение Ван – дер – Ваальса для одного моля газа :

. (17.7)

Для произвольного количества вещества в ν молей газа (т.к. ν = m/M μ ) с учётом того, что V = ν V μ , уравнение Ван – дер – Ваальса примет вид:

, (17.8)

где поправки a и b – постоянные для каждого индивидуального газа величины, вычисляемые из экспериментальных данных (в простейшем случае записываются уравнения Ван – дер – Ваальса для двух известных из опыта состояний газа и решаются относительно величин a и b ).

Поскольку при выводе уравнения для " реального " газа Ван – дер – Ваальсом был сделан ряд весьма существенных упрощений, поэтому оно так же, как и уравнение Менделеева – Клапейрона является достаточно приближённым уравнением, которое, однако, лучше (особенно для не очень сильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.



Для более точного описания опытных данных для реальных газов пользуются эмпирическими уравнениями состояния, чаще всего уравнением Камерлинг – Оннеса, имеющим вид:

, (17.9)

которое построено с таким расчётом, чтобы всегда имелась возможность привести это уравнение к согласию с данными опыта простым вписыванием дополнительных членов без изменения формы уравнения. Коэффициенты B,C, F называются вириальными коэффициентами и представляются в виде многочленов, расположенных по возрастающим степеням Т -1 :

, (17.10)

и аналогично для коэффициентов C,D,E,F .